Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2205.02967
Cited By
Putting Density Functional Theory to the Test in Machine-Learning-Accelerated Materials Discovery
6 May 2022
Chenru Duan
F. Liu
Aditya Nandy
Heather J. Kulik
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Putting Density Functional Theory to the Test in Machine-Learning-Accelerated Materials Discovery"
7 / 7 papers shown
Title
Neural Polarization: Toward Electron Density for Molecules by Extending Equivariant Networks
Bumju Kwak
Jeonghee Jo
53
0
0
01 Jun 2024
Efficient Chemical Space Exploration Using Active Learning Based on Marginalized Graph Kernel: an Application for Predicting the Thermodynamic Properties of Alkanes with Molecular Simulation
Yan Xiang
Yunhao Tang
Zheng Gong
Hongyi Liu
Liang Wu
Guang Lin
Huai Sun
AI4CE
20
0
0
01 Sep 2022
Molecular-orbital-based Machine Learning for Open-shell and Multi-reference Systems with Kernel Addition Gaussian Process Regression
Lixue Cheng
Jiace Sun
J. E. Deustua
Vignesh C. Bhethanabotla
Thomas F. Miller
11
6
0
17 Jul 2022
Exploiting Ligand Additivity for Transferable Machine Learning of Multireference Character Across Known Transition Metal Complex Ligands
Chenru Duan
A. Ladera
Julian C.-L. Liu
Michael G. Taylor
I. Ariyarathna
Heather J. Kulik
13
10
0
05 May 2022
Machine learning models predict calculation outcomes with the transferability necessary for computational catalysis
Chenru Duan
Aditya Nandy
Husain Adamji
Yuriy Román‐Leshkov
Heather J. Kulik
14
6
0
02 Mar 2022
Distributed Representations of Atoms and Materials for Machine Learning
Luis M. Antunes
R. Grau‐Crespo
K. Butler
AI4CE
8
26
0
30 Jul 2021
Machine learning to tame divergent density functional approximations: a new path to consensus materials design principles
Chenru Duan
Shuxin Chen
Michael G. Taylor
F. Liu
Heather J. Kulik
AI4CE
14
18
0
24 Jun 2021
1