ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.05390
  4. Cited By
AutoKE: An automatic knowledge embedding framework for scientific
  machine learning

AutoKE: An automatic knowledge embedding framework for scientific machine learning

11 May 2022
Mengge Du
Yuntian Chen
Dongxiao Zhang
    AI4CE
ArXivPDFHTML

Papers citing "AutoKE: An automatic knowledge embedding framework for scientific machine learning"

4 / 4 papers shown
Title
DISCOVER: Deep identification of symbolically concise open-form PDEs via
  enhanced reinforcement-learning
DISCOVER: Deep identification of symbolically concise open-form PDEs via enhanced reinforcement-learning
Mengge Du
Yuntian Chen
Dong-juan Zhang
23
0
0
04 Oct 2022
Physics-informed neural networks with hard constraints for inverse
  design
Physics-informed neural networks with hard constraints for inverse design
Lu Lu
R. Pestourie
Wenjie Yao
Zhicheng Wang
F. Verdugo
Steven G. Johnson
PINN
39
493
0
09 Feb 2021
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and
  Inverse PDE Problems with Noisy Data
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
170
756
0
13 Mar 2020
hp-VPINNs: Variational Physics-Informed Neural Networks With Domain
  Decomposition
hp-VPINNs: Variational Physics-Informed Neural Networks With Domain Decomposition
E. Kharazmi
Zhongqiang Zhang
George Karniadakis
117
506
0
11 Mar 2020
1