ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.06643
  4. Cited By
The Design Space of E(3)-Equivariant Atom-Centered Interatomic
  Potentials

The Design Space of E(3)-Equivariant Atom-Centered Interatomic Potentials

13 May 2022
Ilyes Batatia
Simon L. Batzner
D. P. Kovács
Albert Musaelian
G. Simm
R. Drautz
Christoph Ortner
Boris Kozinsky
Gábor Csányi
ArXivPDFHTML

Papers citing "The Design Space of E(3)-Equivariant Atom-Centered Interatomic Potentials"

16 / 16 papers shown
Title
Representing spherical tensors with scalar-based machine-learning models
Representing spherical tensors with scalar-based machine-learning models
Michelangelo Domina
Filippo Bigi
Paolo Pegolo
Michele Ceriotti
45
0
0
08 May 2025
Towards Faster and More Compact Foundation Models for Molecular Property Prediction
Towards Faster and More Compact Foundation Models for Molecular Property Prediction
Yasir Ghunaim
Andrés Villa
Gergo Ignacz
Gyorgy Szekely
Motasem Alfarra
Bernard Ghanem
AI4CE
84
0
0
28 Apr 2025
Optimal Invariant Bases for Atomistic Machine Learning
Optimal Invariant Bases for Atomistic Machine Learning
Alice Allen
Emily Shinkle
Roxana Bujack
Nicholas Lubbers
37
0
0
30 Mar 2025
A practical guide to machine learning interatomic potentials -- Status and future
Ryan Jacobs
D. Morgan
Siamak Attarian
Jun Meng
Chen Shen
...
K. J. Schmidt
So Takamoto
Aidan Thompson
Julia Westermayr
Brandon M. Wood
55
4
0
12 Mar 2025
Discovery of sustainable energy materials via the machine-learned material space
Discovery of sustainable energy materials via the machine-learned material space
Malte Grunert
Max Großmann
Erich Runge
31
0
0
10 Jan 2025
Predicting ionic conductivity in solids from the machine-learned potential energy landscape
Predicting ionic conductivity in solids from the machine-learned potential energy landscape
Artem Maevskiy
Alexandra Carvalho
Emil Sataev
Volha Turchyna
Keian Noori
Aleksandr Rodin
A. H. Castro Neto
Andrey E. Ustyuzhanin
37
0
0
11 Nov 2024
Open Materials 2024 (OMat24) Inorganic Materials Dataset and Models
Open Materials 2024 (OMat24) Inorganic Materials Dataset and Models
Luis Barroso-Luque
Muhammed Shuaibi
Xiang Fu
Brandon M. Wood
Misko Dzamba
Meng Gao
Ammar Rizvi
C. L. Zitnick
Zachary W. Ulissi
AI4CE
PINN
32
16
0
16 Oct 2024
A Geometric Insight into Equivariant Message Passing Neural Networks on
  Riemannian Manifolds
A Geometric Insight into Equivariant Message Passing Neural Networks on Riemannian Manifolds
Ilyes Batatia
18
0
0
16 Oct 2023
EGraFFBench: Evaluation of Equivariant Graph Neural Network Force Fields
  for Atomistic Simulations
EGraFFBench: Evaluation of Equivariant Graph Neural Network Force Fields for Atomistic Simulations
Vaibhav Bihani
Utkarsh Pratiush
Sajid Mannan
Tao Du
Zhimin Chen
Santiago Miret
Matthieu Micoulaut
M. Smedskjaer
Sayan Ranu
N. M. A. Krishnan
24
19
0
03 Oct 2023
Beyond MD17: the reactive xxMD dataset
Beyond MD17: the reactive xxMD dataset
Zihan Pengmei
Junyu Liu
Yinan Shu
21
6
0
22 Aug 2023
Scaling the leading accuracy of deep equivariant models to biomolecular
  simulations of realistic size
Scaling the leading accuracy of deep equivariant models to biomolecular simulations of realistic size
Albert Musaelian
A. Johansson
Simon L. Batzner
Boris Kozinsky
27
48
0
20 Apr 2023
A new perspective on building efficient and expressive 3D equivariant
  graph neural networks
A new perspective on building efficient and expressive 3D equivariant graph neural networks
Weitao Du
Yuanqi Du
Limei Wang
Dieqiao Feng
Guifeng Wang
Shuiwang Ji
Carla P. Gomes
Zhixin Ma
AI4CE
27
33
0
07 Apr 2023
Unifying O(3) Equivariant Neural Networks Design with Tensor-Network
  Formalism
Unifying O(3) Equivariant Neural Networks Design with Tensor-Network Formalism
Zimu Li
Zihan Pengmei
Han Zheng
Erik H. Thiede
Junyu Liu
Risi Kondor
27
2
0
14 Nov 2022
Hierarchical Learning in Euclidean Neural Networks
Hierarchical Learning in Euclidean Neural Networks
Joshua A. Rackers
P. Rao
28
1
0
10 Oct 2022
BIP: Boost Invariant Polynomials for Efficient Jet Tagging
BIP: Boost Invariant Polynomials for Efficient Jet Tagging
José M. Muñoz
Ilyes Batatia
Christoph Ortner
24
14
0
17 Jul 2022
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
174
1,104
0
27 Apr 2021
1