ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.07479
13
0

Topologically Persistent Features-based Object Recognition in Cluttered Indoor Environments

16 May 2022
Ekta U. Samani
A. Banerjee
    3DPC
ArXivPDFHTML
Abstract

Recognition of occluded objects in unseen indoor environments is a challenging problem for mobile robots. This work proposes a new slicing-based topological descriptor that captures the 3D shape of object point clouds to address this challenge. It yields similarities between the descriptors of the occluded and the corresponding unoccluded objects, enabling object unity-based recognition using a library of trained models. The descriptor is obtained by partitioning an object's point cloud into multiple 2D slices and constructing filtrations (nested sequences of simplicial complexes) on the slices to mimic further slicing of the slices, thereby capturing detailed shapes through persistent homology-generated features. We use nine different sequences of cluttered scenes from a benchmark dataset for performance evaluation. Our method outperforms two state-of-the-art deep learning-based point cloud classification methods, namely, DGCNN and SimpleView.

View on arXiv
Comments on this paper