Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2205.08514
Cited By
Recovering Private Text in Federated Learning of Language Models
17 May 2022
Samyak Gupta
Yangsibo Huang
Zexuan Zhong
Tianyu Gao
Kai Li
Danqi Chen
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Recovering Private Text in Federated Learning of Language Models"
13 / 13 papers shown
Title
Privacy in Fine-tuning Large Language Models: Attacks, Defenses, and Future Directions
Hao Du
Shang Liu
Lele Zheng
Yang Cao
Atsuyoshi Nakamura
Lei Chen
AAML
109
3
0
21 Dec 2024
Recent Advances in Federated Learning Driven Large Language Models: A Survey on Architecture, Performance, and Security
Youyang Qu
Ming Liu
Tianqing Zhu
Longxiang Gao
Shui Yu
Wanlei Zhou
MU
FedML
54
2
0
14 Jun 2024
DAGER: Exact Gradient Inversion for Large Language Models
Ivo Petrov
Dimitar I. Dimitrov
Maximilian Baader
Mark Niklas Muller
Martin Vechev
FedML
41
2
0
24 May 2024
AdapterSwap: Continuous Training of LLMs with Data Removal and Access-Control Guarantees
William Fleshman
Aleem Khan
Marc Marone
Benjamin Van Durme
CLL
KELM
42
3
0
12 Apr 2024
BC4LLM: Trusted Artificial Intelligence When Blockchain Meets Large Language Models
Haoxiang Luo
Jian Luo
Athanasios V. Vasilakos
19
9
0
10 Oct 2023
A Survey of What to Share in Federated Learning: Perspectives on Model Utility, Privacy Leakage, and Communication Efficiency
Jiawei Shao
Zijian Li
Wenqiang Sun
Tailin Zhou
Yuchang Sun
Lumin Liu
Zehong Lin
Yuyi Mao
Jun Zhang
FedML
26
22
0
20 Jul 2023
CANIFE: Crafting Canaries for Empirical Privacy Measurement in Federated Learning
Samuel Maddock
Alexandre Sablayrolles
Pierre Stock
FedML
8
22
0
06 Oct 2022
Dropout is NOT All You Need to Prevent Gradient Leakage
Daniel Scheliga
Patrick Mäder
M. Seeland
FedML
14
10
0
12 Aug 2022
Decepticons: Corrupted Transformers Breach Privacy in Federated Learning for Language Models
Liam H. Fowl
Jonas Geiping
Steven Reich
Yuxin Wen
Wojtek Czaja
Micah Goldblum
Tom Goldstein
FedML
71
55
0
29 Jan 2022
When the Curious Abandon Honesty: Federated Learning Is Not Private
Franziska Boenisch
Adam Dziedzic
R. Schuster
Ali Shahin Shamsabadi
Ilia Shumailov
Nicolas Papernot
FedML
AAML
64
180
0
06 Dec 2021
Differentially Private Fine-tuning of Language Models
Da Yu
Saurabh Naik
A. Backurs
Sivakanth Gopi
Huseyin A. Inan
...
Y. Lee
Andre Manoel
Lukas Wutschitz
Sergey Yekhanin
Huishuai Zhang
134
344
0
13 Oct 2021
Extracting Training Data from Large Language Models
Nicholas Carlini
Florian Tramèr
Eric Wallace
Matthew Jagielski
Ariel Herbert-Voss
...
Tom B. Brown
D. Song
Ulfar Erlingsson
Alina Oprea
Colin Raffel
MLAU
SILM
267
1,798
0
14 Dec 2020
Privacy and Robustness in Federated Learning: Attacks and Defenses
Lingjuan Lyu
Han Yu
Xingjun Ma
Chen Chen
Lichao Sun
Jun Zhao
Qiang Yang
Philip S. Yu
FedML
169
351
0
07 Dec 2020
1