ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.08576
  4. Cited By
Label-Efficient Self-Supervised Federated Learning for Tackling Data
  Heterogeneity in Medical Imaging

Label-Efficient Self-Supervised Federated Learning for Tackling Data Heterogeneity in Medical Imaging

17 May 2022
Rui Yan
Liangqiong Qu
Qingyue Wei
Shih-Cheng Huang
Liyue Shen
D. Rubin
Lei Xing
Yuyin Zhou
    FedML
ArXivPDFHTML

Papers citing "Label-Efficient Self-Supervised Federated Learning for Tackling Data Heterogeneity in Medical Imaging"

9 / 9 papers shown
Title
Boosting multi-demographic federated learning for chest x-ray analysis using general-purpose self-supervised representations
Boosting multi-demographic federated learning for chest x-ray analysis using general-purpose self-supervised representations
Mahshad Lotfinia
Arash Tayebiarasteh
Samaneh Samiei
Mehdi Joodaki
Soroosh Tayebi Arasteh
23
0
0
11 Apr 2025
Technical Insights and Legal Considerations for Advancing Federated Learning in Bioinformatics
Technical Insights and Legal Considerations for Advancing Federated Learning in Bioinformatics
Daniele Malpetti
Marco Scutari
Francesco Gualdi
Jessica van Setten
Sander van der Laan
Saskia Haitjema
Aaron Mark Lee
Isabelle Hering
Francesca Mangili
FedML
AI4CE
95
0
0
12 Mar 2025
Selective Aggregation for Low-Rank Adaptation in Federated Learning
Selective Aggregation for Low-Rank Adaptation in Federated Learning
Pengxin Guo
Shuang Zeng
Y. Wang
Huijie Fan
Feifei Wang
Liangqiong Qu
FedML
34
8
0
02 Oct 2024
FedMRL: Data Heterogeneity Aware Federated Multi-agent Deep
  Reinforcement Learning for Medical Imaging
FedMRL: Data Heterogeneity Aware Federated Multi-agent Deep Reinforcement Learning for Medical Imaging
Pranab Sahoo
Ashutosh Tripathi
Sriparna Saha
S. Mondal
22
0
0
08 Jul 2024
Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
258
7,337
0
11 Nov 2021
SSFL: Tackling Label Deficiency in Federated Learning via Personalized
  Self-Supervision
SSFL: Tackling Label Deficiency in Federated Learning via Personalized Self-Supervision
Chaoyang He
Zhengyu Yang
Erum Mushtaq
Sunwoo Lee
Mahdi Soltanolkotabi
A. Avestimehr
FedML
87
36
0
06 Oct 2021
Intriguing Properties of Vision Transformers
Intriguing Properties of Vision Transformers
Muzammal Naseer
Kanchana Ranasinghe
Salman Khan
Munawar Hayat
F. Khan
Ming-Hsuan Yang
ViT
248
618
0
21 May 2021
Zero-Shot Text-to-Image Generation
Zero-Shot Text-to-Image Generation
Aditya A. Ramesh
Mikhail Pavlov
Gabriel Goh
Scott Gray
Chelsea Voss
Alec Radford
Mark Chen
Ilya Sutskever
VLM
253
4,735
0
24 Feb 2021
The Future of Digital Health with Federated Learning
The Future of Digital Health with Federated Learning
Nicola Rieke
Jonny Hancox
Wenqi Li
Fausto Milletari
H. Roth
...
Ronald M. Summers
Andrew Trask
Daguang Xu
Maximilian Baust
M. Jorge Cardoso
OOD
174
1,690
0
18 Mar 2020
1