ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.09390
  4. Cited By
Truncated tensor Schatten p-norm based approach for spatiotemporal
  traffic data imputation with complicated missing patterns

Truncated tensor Schatten p-norm based approach for spatiotemporal traffic data imputation with complicated missing patterns

19 May 2022
Tong Nie
Guoyang Qin
Jian-jun Sun
ArXivPDFHTML

Papers citing "Truncated tensor Schatten p-norm based approach for spatiotemporal traffic data imputation with complicated missing patterns"

3 / 3 papers shown
Title
Collaborative Imputation of Urban Time Series through Cross-city Meta-learning
Collaborative Imputation of Urban Time Series through Cross-city Meta-learning
Tong Nie
Wei Ma
Jian-jun Sun
Yu Yang
Jiannong Cao
AI4TS
AI4CE
36
0
0
20 Jan 2025
A Parameter-free Nonconvex Low-rank Tensor Completion Model for
  Spatiotemporal Traffic Data Recovery
A Parameter-free Nonconvex Low-rank Tensor Completion Model for Spatiotemporal Traffic Data Recovery
Yang He
Yuheng Jia
Liyang Hu
Chengchuan An
Zhenbo Lu
Jingxin Xia
21
2
0
28 Sep 2022
A Nonconvex Low-Rank Tensor Completion Model for Spatiotemporal Traffic
  Data Imputation
A Nonconvex Low-Rank Tensor Completion Model for Spatiotemporal Traffic Data Imputation
Xinyu Chen
Jin-Ming Yang
Lijun Sun
AI4TS
32
135
0
23 Mar 2020
1