ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.10278
  4. Cited By
A theoretical framework for self-supervised MR image reconstruction
  using sub-sampling via variable density Noisier2Noise

A theoretical framework for self-supervised MR image reconstruction using sub-sampling via variable density Noisier2Noise

20 May 2022
Charles Millard
M. Chiew
ArXivPDFHTML

Papers citing "A theoretical framework for self-supervised MR image reconstruction using sub-sampling via variable density Noisier2Noise"

10 / 10 papers shown
Title
Noisier2Inverse: Self-Supervised Learning for Image Reconstruction with Correlated Noise
Noisier2Inverse: Self-Supervised Learning for Image Reconstruction with Correlated Noise
Nadja Gruber
Johannes Schwab
Markus Haltmeier
Ander Biguri
Clemens Dlaska
Gyeongha Hwang
35
0
0
25 Mar 2025
Benchmarking Self-Supervised Learning Methods for Accelerated MRI Reconstruction
Benchmarking Self-Supervised Learning Methods for Accelerated MRI Reconstruction
Andrew Wang
Steven McDonagh
Mike Davies
OOD
SSL
109
0
0
19 Feb 2025
MotionTTT: 2D Test-Time-Training Motion Estimation for 3D Motion
  Corrected MRI
MotionTTT: 2D Test-Time-Training Motion Estimation for 3D Motion Corrected MRI
Tobit Klug
Kun Wang
Stefan Ruschke
Reinhard Heckel
MedIm
40
1
0
14 Sep 2024
Ambient Diffusion Posterior Sampling: Solving Inverse Problems with Diffusion Models Trained on Corrupted Data
Ambient Diffusion Posterior Sampling: Solving Inverse Problems with Diffusion Models Trained on Corrupted Data
Asad Aali
Giannis Daras
Brett Levac
Sidharth Kumar
Alexandros G. Dimakis
Jonathan I. Tamir
MedIm
56
9
0
13 Mar 2024
JSSL: Joint Supervised and Self-supervised Learning for MRI
  Reconstruction
JSSL: Joint Supervised and Self-supervised Learning for MRI Reconstruction
George Yiasemis
N. Moriakov
Clara I. Sánchez
J. Sonke
Jonas Teuwen
10
2
0
27 Nov 2023
A Deep Learning Method for Simultaneous Denoising and Missing Wedge
  Reconstruction in Cryogenic Electron Tomography
A Deep Learning Method for Simultaneous Denoising and Missing Wedge Reconstruction in Cryogenic Electron Tomography
Simon Wiedemann
Reinhard Heckel
17
7
0
09 Nov 2023
K-band: Self-supervised MRI Reconstruction via Stochastic Gradient
  Descent over K-space Subsets
K-band: Self-supervised MRI Reconstruction via Stochastic Gradient Descent over K-space Subsets
Frédéric Wang
Han Qi
A. D. Goyeneche
Reinhard Heckel
Michael Lustig
Efrat Shimron
19
4
0
05 Aug 2023
Ambient Diffusion: Learning Clean Distributions from Corrupted Data
Ambient Diffusion: Learning Clean Distributions from Corrupted Data
Giannis Daras
Kulin Shah
Y. Dagan
Aravind Gollakota
A. Dimakis
Adam R. Klivans
DiffM
37
64
0
30 May 2023
Analyzing the Sample Complexity of Self-Supervised Image Reconstruction
  Methods
Analyzing the Sample Complexity of Self-Supervised Image Reconstruction Methods
Tobit Klug
Dogukan Atik
Reinhard Heckel
29
7
0
30 May 2023
Self-Supervised Learning for MRI Reconstruction with a Parallel Network
  Training Framework
Self-Supervised Learning for MRI Reconstruction with a Parallel Network Training Framework
Chenwenbao Hu
Cheng Li
Haifeng Wang
Qiegen Liu
Hairong Zheng
Shanshan Wang
OOD
87
45
0
26 Sep 2021
1