Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2205.11200
Cited By
BBTv2: Towards a Gradient-Free Future with Large Language Models
23 May 2022
Tianxiang Sun
Zhengfu He
Hong Qian
Yunhua Zhou
Xuanjing Huang
Xipeng Qiu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"BBTv2: Towards a Gradient-Free Future with Large Language Models"
7 / 7 papers shown
Title
P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks
Xiao Liu
Kaixuan Ji
Yicheng Fu
Weng Lam Tam
Zhengxiao Du
Zhilin Yang
Jie Tang
VLM
206
604
0
14 Oct 2021
Paradigm Shift in Natural Language Processing
Tianxiang Sun
Xiangyang Liu
Xipeng Qiu
Xuanjing Huang
100
71
0
26 Sep 2021
The Power of Scale for Parameter-Efficient Prompt Tuning
Brian Lester
Rami Al-Rfou
Noah Constant
VPVLM
254
2,999
0
18 Apr 2021
What Makes Good In-Context Examples for GPT-
3
3
3
?
Jiachang Liu
Dinghan Shen
Yizhe Zhang
Bill Dolan
Lawrence Carin
Weizhu Chen
AAML
RALM
256
991
0
17 Jan 2021
Making Pre-trained Language Models Better Few-shot Learners
Tianyu Gao
Adam Fisch
Danqi Chen
223
1,649
0
31 Dec 2020
Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference
Timo Schick
Hinrich Schütze
228
1,382
0
21 Jan 2020
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Alex Jinpeng Wang
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
267
6,003
0
20 Apr 2018
1