Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2205.11393
Cited By
Generic bounds on the approximation error for physics-informed (and) operator learning
23 May 2022
Tim De Ryck
Siddhartha Mishra
PINN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Generic bounds on the approximation error for physics-informed (and) operator learning"
5 / 5 papers shown
Title
Data-Efficient Kernel Methods for Learning Differential Equations and Their Solution Operators: Algorithms and Error Analysis
Yasamin Jalalian
Juan Felipe Osorio Ramirez
Alexander W. Hsu
Bamdad Hosseini
H. Owhadi
28
0
0
02 Mar 2025
Leveraging Interpolation Models and Error Bounds for Verifiable Scientific Machine Learning
Tyler Chang
Andrew Gillette
R. Maulik
19
2
0
04 Apr 2024
Nonlinear Reconstruction for Operator Learning of PDEs with Discontinuities
S. Lanthaler
Roberto Molinaro
Patrik Hadorn
Siddhartha Mishra
31
23
0
03 Oct 2022
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
188
2,254
0
18 Oct 2020
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
161
616
0
13 Mar 2020
1