ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.11498
  4. Cited By
Injecting Domain Adaptation with Learning-to-hash for Effective and
  Efficient Zero-shot Dense Retrieval

Injecting Domain Adaptation with Learning-to-hash for Effective and Efficient Zero-shot Dense Retrieval

23 May 2022
Nandan Thakur
Nils Reimers
Jimmy J. Lin
    VLM
ArXivPDFHTML

Papers citing "Injecting Domain Adaptation with Learning-to-hash for Effective and Efficient Zero-shot Dense Retrieval"

3 / 3 papers shown
Title
Leveraging LLMs for Synthesizing Training Data Across Many Languages in
  Multilingual Dense Retrieval
Leveraging LLMs for Synthesizing Training Data Across Many Languages in Multilingual Dense Retrieval
Nandan Thakur
Jianmo Ni
Gustavo Hernández Ábrego
John Wieting
Jimmy J. Lin
Daniel Matthew Cer
RALM
29
12
0
10 Nov 2023
Zero-Shot Dense Retrieval with Momentum Adversarial Domain Invariant
  Representations
Zero-Shot Dense Retrieval with Momentum Adversarial Domain Invariant Representations
Ji Xin
Chenyan Xiong
A. Srinivasan
Ankita Sharma
Damien Jose
Paul N. Bennett
VLM
78
41
0
14 Oct 2021
BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information
  Retrieval Models
BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information Retrieval Models
Nandan Thakur
Nils Reimers
Andreas Rucklé
Abhishek Srivastava
Iryna Gurevych
VLM
229
966
0
17 Apr 2021
1