ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.12038
  4. Cited By
FedEntropy: Efficient Device Grouping for Federated Learning Using
  Maximum Entropy Judgment

FedEntropy: Efficient Device Grouping for Federated Learning Using Maximum Entropy Judgment

24 May 2022
Zhiwei Ling
Zhihao Yue
Jun Xia
Ming Hu
Ting Wang
Mingsong Chen
    FedML
ArXivPDFHTML

Papers citing "FedEntropy: Efficient Device Grouping for Federated Learning Using Maximum Entropy Judgment"

2 / 2 papers shown
Title
Linear Convergence in Federated Learning: Tackling Client Heterogeneity
  and Sparse Gradients
Linear Convergence in Federated Learning: Tackling Client Heterogeneity and Sparse Gradients
A. Mitra
Rayana H. Jaafar
George J. Pappas
Hamed Hassani
FedML
55
157
0
14 Feb 2021
Performance Optimization for Federated Person Re-identification via
  Benchmark Analysis
Performance Optimization for Federated Person Re-identification via Benchmark Analysis
Weiming Zhuang
Yonggang Wen
Xuesen Zhang
Xin Gan
Daiying Yin
Dongzhan Zhou
Shuai Zhang
Shuai Yi
FedML
76
95
0
26 Aug 2020
1