Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2205.13573
Cited By
Efficient Approximation of Gromov-Wasserstein Distance Using Importance Sparsification
26 May 2022
Mengyu Li
Jun Yu
Hongteng Xu
Cheng Meng
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Efficient Approximation of Gromov-Wasserstein Distance Using Importance Sparsification"
8 / 8 papers shown
Title
The Z-Gromov-Wasserstein Distance
Martin Bauer
Facundo Mémoli
Tom Needham
Mao Nishino
OT
20
2
0
15 Aug 2024
Fast Gradient Computation for Gromov-Wasserstein Distance
Wei Zhang
Zihao W. Wang
Jie Fan
Hao Wu
Yong Zhang
OT
16
1
0
13 Apr 2024
Temporally Consistent Unbalanced Optimal Transport for Unsupervised Action Segmentation
Ming Xu
Stephen Gould
OT
19
6
0
01 Apr 2024
Importance Sparsification for Sinkhorn Algorithm
Mengyun Li
Jun Yu
Tao Li
Cheng Meng
OT
28
7
0
11 Jun 2023
Decentralized Entropic Optimal Transport for Privacy-preserving Distributed Distribution Comparison
Xiangfeng Wang
Hongteng Xu
Moyi Yang
OT
14
2
0
28 Jan 2023
Hilbert Curve Projection Distance for Distribution Comparison
Tao Li
Cheng Meng
Hongteng Xu
Jun Yu
34
12
0
30 May 2022
Semi-relaxed Gromov-Wasserstein divergence with applications on graphs
Cédric Vincent-Cuaz
Rémi Flamary
Marco Corneli
Titouan Vayer
Nicolas Courty
OT
28
23
0
06 Oct 2021
On Unbalanced Optimal Transport: An Analysis of Sinkhorn Algorithm
Khiem Pham
Khang Le
Nhat Ho
Tung Pham
Hung Bui
OT
42
72
0
09 Feb 2020
1