ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.13585
  4. Cited By
Learning in Feedback-driven Recurrent Spiking Neural Networks using
  full-FORCE Training

Learning in Feedback-driven Recurrent Spiking Neural Networks using full-FORCE Training

26 May 2022
A. Paul
Stefan Sylvius Wagner
Anup Das
ArXivPDFHTML

Papers citing "Learning in Feedback-driven Recurrent Spiking Neural Networks using full-FORCE Training"

4 / 4 papers shown
Title
Exploiting Heterogeneity in Timescales for Sparse Recurrent Spiking
  Neural Networks for Energy-Efficient Edge Computing
Exploiting Heterogeneity in Timescales for Sparse Recurrent Spiking Neural Networks for Energy-Efficient Edge Computing
Biswadeep Chakraborty
Saibal Mukhopadhyay
24
2
0
08 Jul 2024
Design Technology Co-Optimization for Neuromorphic Computing
Design Technology Co-Optimization for Neuromorphic Computing
Ankita Paul
Shihao Song
Anup Das
30
6
0
15 Oct 2021
PyCARL: A PyNN Interface for Hardware-Software Co-Simulation of Spiking
  Neural Network
PyCARL: A PyNN Interface for Hardware-Software Co-Simulation of Spiking Neural Network
Adarsha Balaji
Prathyusha Adiraju
H. Kashyap
Anup Das
J. Krichmar
N. Dutt
F. Catthoor
36
47
0
21 Mar 2020
Mapping Spiking Neural Networks to Neuromorphic Hardware
Mapping Spiking Neural Networks to Neuromorphic Hardware
Adarsha Balaji
Anup Das
Yuefeng Wu
Khanh Huynh
Francesco DellÁnna
Giacomo Indiveri
J. Krichmar
N. Dutt
S. Schaafsma
F. Catthoor
26
112
0
04 Sep 2019
1