ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.13924
  4. Cited By
Lifting the Information Ratio: An Information-Theoretic Analysis of
  Thompson Sampling for Contextual Bandits

Lifting the Information Ratio: An Information-Theoretic Analysis of Thompson Sampling for Contextual Bandits

27 May 2022
Gergely Neu
Julia Olkhovskaya
Matteo Papini
Ludovic Schwartz
ArXivPDFHTML

Papers citing "Lifting the Information Ratio: An Information-Theoretic Analysis of Thompson Sampling for Contextual Bandits"

14 / 14 papers shown
Title
Sparse Nonparametric Contextual Bandits
Sparse Nonparametric Contextual Bandits
Hamish Flynn
Julia Olkhovskaya
Paul Rognon-Vael
51
0
0
20 Mar 2025
An Information-Theoretic Analysis of Thompson Sampling with Infinite Action Spaces
An Information-Theoretic Analysis of Thompson Sampling with Infinite Action Spaces
Amaury Gouverneur
Borja Rodríguez Gálvez
T. Oechtering
Mikael Skoglund
46
0
0
04 Feb 2025
On Bits and Bandits: Quantifying the Regret-Information Trade-off
On Bits and Bandits: Quantifying the Regret-Information Trade-off
Itai Shufaro
Nadav Merlis
Nir Weinberger
Shie Mannor
31
0
0
26 May 2024
Chained Information-Theoretic bounds and Tight Regret Rate for Linear
  Bandit Problems
Chained Information-Theoretic bounds and Tight Regret Rate for Linear Bandit Problems
Amaury Gouverneur
Borja Rodríguez Gálvez
T. Oechtering
Mikael Skoglund
26
0
0
05 Mar 2024
Optimistic Information Directed Sampling
Optimistic Information Directed Sampling
Gergely Neu
Matteo Papini
Ludovic Schwartz
42
2
0
23 Feb 2024
Thompson Sampling for Stochastic Bandits with Noisy Contexts: An
  Information-Theoretic Regret Analysis
Thompson Sampling for Stochastic Bandits with Noisy Contexts: An Information-Theoretic Regret Analysis
Sharu Theresa Jose
Shana Moothedath
30
2
0
21 Jan 2024
Incentivizing Exploration with Linear Contexts and Combinatorial Actions
Incentivizing Exploration with Linear Contexts and Combinatorial Actions
Mark Sellke
19
3
0
03 Jun 2023
Thompson Sampling Regret Bounds for Contextual Bandits with sub-Gaussian
  rewards
Thompson Sampling Regret Bounds for Contextual Bandits with sub-Gaussian rewards
Amaury Gouverneur
Borja Rodríguez Gálvez
T. Oechtering
Mikael Skoglund
16
4
0
26 Apr 2023
A Definition of Non-Stationary Bandits
A Definition of Non-Stationary Bandits
Yueyang Liu
Kuang Xu
Benjamin Van Roy
14
11
0
23 Feb 2023
An Information-Theoretic Analysis of Nonstationary Bandit Learning
An Information-Theoretic Analysis of Nonstationary Bandit Learning
Seungki Min
Daniel Russo
18
6
0
09 Feb 2023
Overcoming Prior Misspecification in Online Learning to Rank
Overcoming Prior Misspecification in Online Learning to Rank
Javad Azizi
Ofer Meshi
M. Zoghi
Maryam Karimzadehgan
15
1
0
25 Jan 2023
Contextual Information-Directed Sampling
Contextual Information-Directed Sampling
Botao Hao
Tor Lattimore
Chao Qin
37
13
0
22 May 2022
Non-Stationary Bandit Learning via Predictive Sampling
Non-Stationary Bandit Learning via Predictive Sampling
Yueyang Liu
Kuang Xu
Benjamin Van Roy
14
19
0
04 May 2022
Instance-Wise Minimax-Optimal Algorithms for Logistic Bandits
Instance-Wise Minimax-Optimal Algorithms for Logistic Bandits
Marc Abeille
Louis Faury
Clément Calauzènes
96
37
0
23 Oct 2020
1