ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.00924
  4. Cited By
FACM: Intermediate Layer Still Retain Effective Features against
  Adversarial Examples

FACM: Intermediate Layer Still Retain Effective Features against Adversarial Examples

2 June 2022
Xiangyuan Yang
Jie Lin
Hanlin Zhang
Xinyu Yang
Peng Zhao
    AAML
ArXivPDFHTML

Papers citing "FACM: Intermediate Layer Still Retain Effective Features against Adversarial Examples"

4 / 4 papers shown
Title
Efficient and Effective Augmentation Strategy for Adversarial Training
Efficient and Effective Augmentation Strategy for Adversarial Training
Sravanti Addepalli
Samyak Jain
R. Venkatesh Babu
AAML
57
57
0
27 Oct 2022
Exploring Architectural Ingredients of Adversarially Robust Deep Neural
  Networks
Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks
Hanxun Huang
Yisen Wang
S. Erfani
Quanquan Gu
James Bailey
Xingjun Ma
AAML
TPM
44
100
0
07 Oct 2021
RobustBench: a standardized adversarial robustness benchmark
RobustBench: a standardized adversarial robustness benchmark
Francesco Croce
Maksym Andriushchenko
Vikash Sehwag
Edoardo Debenedetti
Nicolas Flammarion
M. Chiang
Prateek Mittal
Matthias Hein
VLM
207
668
0
19 Oct 2020
Shield: Fast, Practical Defense and Vaccination for Deep Learning using
  JPEG Compression
Shield: Fast, Practical Defense and Vaccination for Deep Learning using JPEG Compression
Nilaksh Das
Madhuri Shanbhogue
Shang-Tse Chen
Fred Hohman
Siwei Li
Li-Wei Chen
Michael E. Kounavis
Duen Horng Chau
FedML
AAML
30
223
0
19 Feb 2018
1