ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.01794
  4. Cited By
Additive MIL: Intrinsically Interpretable Multiple Instance Learning for
  Pathology

Additive MIL: Intrinsically Interpretable Multiple Instance Learning for Pathology

3 June 2022
Syed Ashar Javed
Dinkar Juyal
Harshith Padigela
A. Taylor-Weiner
Limin Yu
Aaditya (Adi) Prakash
ArXivPDFHTML

Papers citing "Additive MIL: Intrinsically Interpretable Multiple Instance Learning for Pathology"

4 / 4 papers shown
Title
Self-Supervision Enhances Instance-based Multiple Instance Learning Methods in Digital Pathology: A Benchmark Study
Self-Supervision Enhances Instance-based Multiple Instance Learning Methods in Digital Pathology: A Benchmark Study
Ali Mammadov
Loic Le Folgoc
Julien Adam
Anne Buronfosse
Gilles Hayem
Guillaume Hocquet
Pietro Gori
SSL
42
0
0
02 May 2025
Rethinking Transformer for Long Contextual Histopathology Whole Slide
  Image Analysis
Rethinking Transformer for Long Contextual Histopathology Whole Slide Image Analysis
Honglin Li
Yunlong Zhang
Pingyi Chen
Zhongyi Shui
Chenglu Zhu
Lin Yang
MedIm
32
4
0
18 Oct 2024
A self-supervised framework for learning whole slide representations
A self-supervised framework for learning whole slide representations
X. Hou
Cheng Jiang
A. Kondepudi
Yiwei Lyu
Asadur Chowdury
Honglak Lee
Todd C. Hollon
MedIm
26
5
0
09 Feb 2024
Artificial Intelligence for Digital and Computational Pathology
Artificial Intelligence for Digital and Computational Pathology
Andrew H. Song
Guillaume Jaume
Drew F. K. Williamson
Ming Y. Lu
Anurag J. Vaidya
Tiffany R. Miller
Faisal Mahmood
AI4CE
30
129
0
13 Dec 2023
1