ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.02072
  4. Cited By
Deciding What to Model: Value-Equivalent Sampling for Reinforcement
  Learning

Deciding What to Model: Value-Equivalent Sampling for Reinforcement Learning

4 June 2022
Dilip Arumugam
Benjamin Van Roy
    OffRL
ArXivPDFHTML

Papers citing "Deciding What to Model: Value-Equivalent Sampling for Reinforcement Learning"

6 / 6 papers shown
Title
Toward Efficient Exploration by Large Language Model Agents
Toward Efficient Exploration by Large Language Model Agents
Dilip Arumugam
Thomas L. Griffiths
LLMAG
89
0
0
29 Apr 2025
Meta-Gradient Search Control: A Method for Improving the Efficiency of
  Dyna-style Planning
Meta-Gradient Search Control: A Method for Improving the Efficiency of Dyna-style Planning
Bradley Burega
John D. Martin
Luke Kapeluck
Michael H. Bowling
32
0
0
27 Jun 2024
On Bits and Bandits: Quantifying the Regret-Information Trade-off
On Bits and Bandits: Quantifying the Regret-Information Trade-off
Itai Shufaro
Nadav Merlis
Nir Weinberger
Shie Mannor
33
0
0
26 May 2024
Bayesian Reinforcement Learning with Limited Cognitive Load
Bayesian Reinforcement Learning with Limited Cognitive Load
Dilip Arumugam
Mark K. Ho
Noah D. Goodman
Benjamin Van Roy
OffRL
34
8
0
05 May 2023
On Rate-Distortion Theory in Capacity-Limited Cognition & Reinforcement
  Learning
On Rate-Distortion Theory in Capacity-Limited Cognition & Reinforcement Learning
Dilip Arumugam
Mark K. Ho
Noah D. Goodman
Benjamin Van Roy
28
4
0
30 Oct 2022
Regret Bounds for Information-Directed Reinforcement Learning
Regret Bounds for Information-Directed Reinforcement Learning
Botao Hao
Tor Lattimore
OffRL
39
17
0
09 Jun 2022
1