ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.03484
24
22

Detection Hub: Unifying Object Detection Datasets via Query Adaptation on Language Embedding

7 June 2022
Lingchen Meng
Xiyang Dai
Yinpeng Chen
Pengchuan Zhang
Dongdong Chen
Mengchen Liu
Jianfeng Wang
Zuxuan Wu
Lu Yuan
Yu-Gang Jiang
    ObjD
ArXivPDFHTML
Abstract

Combining multiple datasets enables performance boost on many computer vision tasks. But similar trend has not been witnessed in object detection when combining multiple datasets due to two inconsistencies among detection datasets: taxonomy difference and domain gap. In this paper, we address these challenges by a new design (named Detection Hub) that is dataset-aware and category-aligned. It not only mitigates the dataset inconsistency but also provides coherent guidance for the detector to learn across multiple datasets. In particular, the dataset-aware design is achieved by learning a dataset embedding that is used to adapt object queries as well as convolutional kernels in detection heads. The categories across datasets are semantically aligned into a unified space by replacing one-hot category representations with word embedding and leveraging the semantic coherence of language embedding. Detection Hub fulfills the benefits of large data on object detection. Experiments demonstrate that joint training on multiple datasets achieves significant performance gains over training on each dataset alone. Detection Hub further achieves SoTA performance on UODB benchmark with wide variety of datasets.

View on arXiv
Comments on this paper