ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.03698
  4. Cited By
What do we learn? Debunking the Myth of Unsupervised Outlier Detection
v1v2 (latest)

What do we learn? Debunking the Myth of Unsupervised Outlier Detection

8 June 2022
Cosmin I. Bercea
Daniel Rueckert
Julia A. Schnabel
    OODD
ArXiv (abs)PDFHTML

Papers citing "What do we learn? Debunking the Myth of Unsupervised Outlier Detection"

6 / 6 papers shown
CADD: Context aware disease deviations via restoration of brain images using normative conditional diffusion models
CADD: Context aware disease deviations via restoration of brain images using normative conditional diffusion models
Ana Lawry Aguila
Ayodeji Ijishakin
Juan Eugenio Iglesias
T. Takenaga
Y. Nomura
T. Yoshikawa
O. Abe
S. Hanaoka
DiffMMedIm
166
0
0
05 Aug 2025
Enclosing Prototypical Variational Autoencoder for Explainable Out-of-Distribution Detection
Enclosing Prototypical Variational Autoencoder for Explainable Out-of-Distribution DetectionInternational Conference on Computer Safety, Reliability, and Security (SAFECOMP), 2025
Conrad Orglmeister
Erik Bochinski
Volker Eiselein
Elvira Fleig
177
0
0
17 Jun 2025
Conditional diffusion models for guided anomaly detection in brain images using fluid-driven anomaly randomization
Conditional diffusion models for guided anomaly detection in brain images using fluid-driven anomaly randomization
Ana Lawry Aguila
Peirong Liu
Oula Puonti
Juan Eugenio Iglesias
DiffMMedIm
239
4
0
11 Jun 2025
Bias in Unsupervised Anomaly Detection in Brain MRI
Bias in Unsupervised Anomaly Detection in Brain MRI
Cosmin I. Bercea
Esther Puyol-Antón
Benedikt Wiestler
Daniel Rueckert
Julia A. Schnabel
A. King
OOD
149
5
0
26 Aug 2023
Mask, Stitch, and Re-Sample: Enhancing Robustness and Generalizability
  in Anomaly Detection through Automatic Diffusion Models
Mask, Stitch, and Re-Sample: Enhancing Robustness and Generalizability in Anomaly Detection through Automatic Diffusion Models
Cosmin I. Bercea
Michaela Neumayr
Daniel Rueckert
Julia A. Schnabel
DiffMMedIm
230
58
0
31 May 2023
Unsupervised Pathology Detection: A Deep Dive Into the State of the Art
Unsupervised Pathology Detection: A Deep Dive Into the State of the ArtIEEE Transactions on Medical Imaging (TMI), 2023
I. Lagogiannis
Felix Meissen
Georgios Kaissis
Daniel Rueckert
OOD
324
28
0
01 Mar 2023
1