ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.03975
  4. Cited By
Functional linear and single-index models: A unified approach via
  Gaussian Stein identity

Functional linear and single-index models: A unified approach via Gaussian Stein identity

8 June 2022
Krishnakumar Balasubramanian
Hans-Georg Müller
Bharath K. Sriperumbudur
ArXivPDFHTML

Papers citing "Functional linear and single-index models: A unified approach via Gaussian Stein identity"

8 / 8 papers shown
Title
Learning a Single Index Model from Anisotropic Data with vanilla Stochastic Gradient Descent
Learning a Single Index Model from Anisotropic Data with vanilla Stochastic Gradient Descent
Guillaume Braun
Minh Ha Quang
Masaaki Imaizumi
MLT
37
0
0
31 Mar 2025
Convergence Analysis of regularised Nyström method for Functional
  Linear Regression
Convergence Analysis of regularised Nyström method for Functional Linear Regression
Naveen Gupta
Sivananthan Sampath
28
0
0
25 Oct 2024
Optimal Rates for Functional Linear Regression with General
  Regularization
Optimal Rates for Functional Linear Regression with General Regularization
Naveen Gupta
S. Sivananthan
Bharath K. Sriperumbudur
21
4
0
14 Jun 2024
Convergence Analysis of Kernel Conjugate Gradient for Functional Linear
  Regression
Convergence Analysis of Kernel Conjugate Gradient for Functional Linear Regression
Naveen Gupta
And S. SIVANANTHAN
Bharath K. Sriperumbudur
20
1
0
04 Oct 2023
Minimax Optimal Kernel Operator Learning via Multilevel Training
Minimax Optimal Kernel Operator Learning via Multilevel Training
Jikai Jin
Yiping Lu
Jose H. Blanchet
Lexing Ying
23
11
0
28 Sep 2022
On Hypothesis Transfer Learning of Functional Linear Models
On Hypothesis Transfer Learning of Functional Linear Models
Haotian Lin
M. Reimherr
25
3
0
09 Jun 2022
A reproducing kernel Hilbert space approach to functional linear
  regression
A reproducing kernel Hilbert space approach to functional linear regression
M. Yuan
Tommaso Cai
95
278
0
12 Nov 2012
An RKHS formulation of the inverse regression dimension-reduction
  problem
An RKHS formulation of the inverse regression dimension-reduction problem
T. Hsing
Haobo Ren
57
53
0
01 Apr 2009
1