ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.04756
  4. Cited By
An Empirical Study on Disentanglement of Negative-free Contrastive
  Learning

An Empirical Study on Disentanglement of Negative-free Contrastive Learning

9 June 2022
Jinkun Cao
Ruiqian Nai
Qing Yang
Jialei Huang
Yang Gao
    CoGe
    DRL
ArXivPDFHTML

Papers citing "An Empirical Study on Disentanglement of Negative-free Contrastive Learning"

6 / 6 papers shown
Title
CFASL: Composite Factor-Aligned Symmetry Learning for Disentanglement in
  Variational AutoEncoder
CFASL: Composite Factor-Aligned Symmetry Learning for Disentanglement in Variational AutoEncoder
Heeseung Jung
Jaehyoung Jeong
Kangil Kim
CoGe
34
0
0
17 Jan 2024
Correcting Flaws in Common Disentanglement Metrics
Correcting Flaws in Common Disentanglement Metrics
Louis Mahon
Lei Shah
Thomas Lukasiewicz
CoGe
DRL
32
3
0
05 Apr 2023
On Feature Decorrelation in Self-Supervised Learning
On Feature Decorrelation in Self-Supervised Learning
Tianyu Hua
Wenxiao Wang
Zihui Xue
Sucheng Ren
Yue Wang
Hang Zhao
SSL
OOD
124
187
0
02 May 2021
Contrastive Learning Inverts the Data Generating Process
Contrastive Learning Inverts the Data Generating Process
Roland S. Zimmermann
Yash Sharma
Steffen Schneider
Matthias Bethge
Wieland Brendel
SSL
238
207
0
17 Feb 2021
BYOL works even without batch statistics
BYOL works even without batch statistics
Pierre Harvey Richemond
Jean-Bastien Grill
Florent Altché
Corentin Tallec
Florian Strub
...
Samuel L. Smith
Soham De
Razvan Pascanu
Bilal Piot
Michal Valko
SSL
250
114
0
20 Oct 2020
Weakly-Supervised Disentanglement Without Compromises
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
181
313
0
07 Feb 2020
1