ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.05262
  4. Cited By
Meta Optimal Transport

Meta Optimal Transport

10 June 2022
Brandon Amos
Samuel N. Cohen
Giulia Luise
I. Redko
    OT
ArXivPDFHTML

Papers citing "Meta Optimal Transport"

26 / 26 papers shown
Title
Embedding Empirical Distributions for Computing Optimal Transport Maps
Embedding Empirical Distributions for Computing Optimal Transport Maps
Mingchen Jiang
Peng Xu
Xichen Ye
Xiaohui Chen
Yun Yang
Yifan Chen
OT
56
0
0
24 Apr 2025
DDEQs: Distributional Deep Equilibrium Models through Wasserstein Gradient Flows
DDEQs: Distributional Deep Equilibrium Models through Wasserstein Gradient Flows
Jonathan Geuter
Clément Bonet
Anna Korba
David Alvarez-Melis
61
0
0
03 Mar 2025
Zero-Shot Offline Imitation Learning via Optimal Transport
Zero-Shot Offline Imitation Learning via Optimal Transport
Thomas Rupf
Marco Bagatella
Nico Gürtler
Jonas Frey
Georg Martius
OffRL
133
0
0
11 Oct 2024
Meta Flow Matching: Integrating Vector Fields on the Wasserstein Manifold
Meta Flow Matching: Integrating Vector Fields on the Wasserstein Manifold
Lazar Atanackovic
Xi Zhang
Brandon Amos
Mathieu Blanchette
Leo J. Lee
Yoshua Bengio
Alexander Tong
Kirill Neklyudov
39
5
0
26 Aug 2024
CLAMS: A System for Zero-Shot Model Selection for Clustering
CLAMS: A System for Zero-Shot Model Selection for Clustering
Prabhant Singh
Pieter Gijsbers
Murat Onur Yildirim
Elif Ceren Gok
Joaquin Vanschoren
34
0
0
15 Jul 2024
Wasserstein Wormhole: Scalable Optimal Transport Distance with
  Transformers
Wasserstein Wormhole: Scalable Optimal Transport Distance with Transformers
Doron Haviv
Russell Z. Kunes
Thomas Dougherty
Cassandra Burdziak
T. Nawy
Anna Gilbert
D. Pe’er
OT
24
5
0
15 Apr 2024
On the impact of measure pre-conditionings on general parametric ML
  models and transfer learning via domain adaptation
On the impact of measure pre-conditionings on general parametric ML models and transfer learning via domain adaptation
Joaquín Sánchez García
AI4CE
16
0
0
04 Mar 2024
Unsupervised Solution Operator Learning for Mean-Field Games via
  Sampling-Invariant Parametrizations
Unsupervised Solution Operator Learning for Mean-Field Games via Sampling-Invariant Parametrizations
Han Huang
Rongjie Lai
30
2
0
27 Jan 2024
DeepEMD: A Transformer-based Fast Estimation of the Earth Mover's
  Distance
DeepEMD: A Transformer-based Fast Estimation of the Earth Mover's Distance
A. Sinha
F. Fleuret
25
3
0
16 Nov 2023
Quasi-Monte Carlo for 3D Sliced Wasserstein
Quasi-Monte Carlo for 3D Sliced Wasserstein
Khai Nguyen
Nicola Bariletto
Nhat Ho
29
17
0
21 Sep 2023
Scalable Optimal Transport Methods in Machine Learning: A Contemporary
  Survey
Scalable Optimal Transport Methods in Machine Learning: A Contemporary Survey
Abdelwahed Khamis
Russell Tsuchida
Mohamed Tarek
V. Rolland
Lars Petersson
OT
43
12
0
08 May 2023
Learning to Re-rank with Constrained Meta-Optimal Transport
Learning to Re-rank with Constrained Meta-Optimal Transport
Andrés Hoyos-Idrobo
OffRL
18
0
0
29 Apr 2023
On amortizing convex conjugates for optimal transport
On amortizing convex conjugates for optimal transport
Brandon Amos
OT
81
27
0
21 Oct 2022
Sparsity-Constrained Optimal Transport
Sparsity-Constrained Optimal Transport
Tianlin Liu
J. Puigcerver
Mathieu Blondel
OT
21
22
0
30 Sep 2022
GeONet: a neural operator for learning the Wasserstein geodesic
GeONet: a neural operator for learning the Wasserstein geodesic
Andrew Gracyk
Xiaohui Chen
OT
18
2
0
28 Sep 2022
Rethinking Initialization of the Sinkhorn Algorithm
Rethinking Initialization of the Sinkhorn Algorithm
James Thornton
Marco Cuturi
OT
21
10
0
15 Jun 2022
Tutorial on amortized optimization
Tutorial on amortized optimization
Brandon Amos
OffRL
75
43
0
01 Feb 2022
Optimal Transport Tools (OTT): A JAX Toolbox for all things Wasserstein
Optimal Transport Tools (OTT): A JAX Toolbox for all things Wasserstein
Marco Cuturi
Laetitia Meng-Papaxanthos
Yingtao Tian
Charlotte Bunne
Geoff Davis
O. Teboul
OT
143
96
0
28 Jan 2022
Neural Optimal Transport
Neural Optimal Transport
Alexander Korotin
Daniil Selikhanovych
Evgeny Burnaev
OT
132
89
0
28 Jan 2022
Cross-Domain Imitation Learning via Optimal Transport
Cross-Domain Imitation Learning via Optimal Transport
Arnaud Fickinger
Samuel N. Cohen
Stuart J. Russell
Brandon Amos
OT
45
48
0
07 Oct 2021
Generative Modeling with Optimal Transport Maps
Generative Modeling with Optimal Transport Maps
Litu Rout
Alexander Korotin
Evgeny Burnaev
OT
DiffM
122
65
0
06 Oct 2021
Neural Monge Map estimation and its applications
Neural Monge Map estimation and its applications
JiaoJiao Fan
Shu Liu
Shaojun Ma
Haomin Zhou
Yongxin Chen
OT
24
23
0
07 Jun 2021
Convex Potential Flows: Universal Probability Distributions with Optimal
  Transport and Convex Optimization
Convex Potential Flows: Universal Probability Distributions with Optimal Transport and Convex Optimization
Chin-Wei Huang
Ricky T. Q. Chen
Christos Tsirigotis
Aaron Courville
OT
119
95
0
10 Dec 2020
Wasserstein-2 Generative Networks
Wasserstein-2 Generative Networks
Alexander Korotin
Vage Egiazarian
Arip Asadulaev
Alexander Safin
E. Burnaev
GAN
128
100
0
28 Sep 2019
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
338
11,684
0
09 Mar 2017
Input Convex Neural Networks
Input Convex Neural Networks
Brandon Amos
Lei Xu
J. Zico Kolter
187
599
0
22 Sep 2016
1