ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.06632
  4. Cited By
Explainable AI for High Energy Physics

Explainable AI for High Energy Physics

14 June 2022
Mark S. Neubauer
Avik Roy
ArXivPDFHTML

Papers citing "Explainable AI for High Energy Physics"

9 / 9 papers shown
Title
LIPEx-Locally Interpretable Probabilistic Explanations-To Look Beyond
  The True Class
LIPEx-Locally Interpretable Probabilistic Explanations-To Look Beyond The True Class
Hongbo Zhu
Angelo Cangelosi
Procheta Sen
Anirbit Mukherjee
FAtt
42
0
0
07 Oct 2023
Two-step interpretable modeling of Intensive Care Acquired Infections
Two-step interpretable modeling of Intensive Care Acquired Infections
Giacomo Lancia
Meri Varkila
O. Cremer
C. Spitoni
15
0
0
26 Jan 2023
FAIR AI Models in High Energy Physics
FAIR AI Models in High Energy Physics
Javier Mauricio Duarte
Haoyang Li
Avik Roy
Ruike Zhu
Eliu A. Huerta
...
Mark S. Neubauer
Sang Eon Park
M. Quinnan
R. Rusack
Zhizhen Zhao
30
8
0
09 Dec 2022
Do graph neural networks learn traditional jet substructure?
Do graph neural networks learn traditional jet substructure?
Farouk Mokhtar
Raghav Kansal
Javier Mauricio Duarte
GNN
34
11
0
17 Nov 2022
A Detailed Study of Interpretability of Deep Neural Network based Top
  Taggers
A Detailed Study of Interpretability of Deep Neural Network based Top Taggers
Ayush Khot
Mark S. Neubauer
Avik Roy
AAML
33
16
0
09 Oct 2022
FAIR for AI: An interdisciplinary and international community building
  perspective
FAIR for AI: An interdisciplinary and international community building perspective
Eliu A. Huerta
B. Blaiszik
L. C. Brinson
Kristofer E Bouchard
Daniel Madrigal Diaz
...
F. Psomopoulos
Avik Roy
Oliver Rübel
Zhizhen Zhao
Ruike Zhu
32
41
0
30 Sep 2022
MLPF: Efficient machine-learned particle-flow reconstruction using graph
  neural networks
MLPF: Efficient machine-learned particle-flow reconstruction using graph neural networks
J. Pata
Javier Mauricio Duarte
J. Vlimant
M. Pierini
M. Spiropulu
107
76
0
21 Jan 2021
Explainability in Graph Neural Networks: A Taxonomic Survey
Explainability in Graph Neural Networks: A Taxonomic Survey
Hao Yuan
Haiyang Yu
Shurui Gui
Shuiwang Ji
167
591
0
31 Dec 2020
Fast inference of deep neural networks in FPGAs for particle physics
Fast inference of deep neural networks in FPGAs for particle physics
Javier Mauricio Duarte
Song Han
Philip C. Harris
S. Jindariani
E. Kreinar
...
J. Ngadiuba
M. Pierini
R. Rivera
N. Tran
Zhenbin Wu
AI4CE
75
386
0
16 Apr 2018
1