ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.06789
  4. Cited By
Grid-SiPhyR: An end-to-end learning to optimize framework for
  combinatorial problems in power systems

Grid-SiPhyR: An end-to-end learning to optimize framework for combinatorial problems in power systems

11 June 2022
R. Haider
Anuradha M. Annaswamy
ArXivPDFHTML

Papers citing "Grid-SiPhyR: An end-to-end learning to optimize framework for combinatorial problems in power systems"

4 / 4 papers shown
Title
Physics-Informed Graph Neural Network for Dynamic Reconfiguration of
  Power Systems
Physics-Informed Graph Neural Network for Dynamic Reconfiguration of Power Systems
Jules Authier
R. Haider
Anuradha M. Annaswamy
Florian Dorfler
AI4CE
PINN
17
4
0
01 Oct 2023
Topology-aware Graph Neural Networks for Learning Feasible and Adaptive
  ac-OPF Solutions
Topology-aware Graph Neural Networks for Learning Feasible and Adaptive ac-OPF Solutions
Shaohui Liu
Chengyang Wu
Hao Zhu
32
47
0
16 May 2022
Solving Mixed Integer Programs Using Neural Networks
Solving Mixed Integer Programs Using Neural Networks
Vinod Nair
Sergey Bartunov
Felix Gimeno
Ingrid von Glehn
Pawel Lichocki
...
Pushmeet Kohli
Ira Ktena
Yujia Li
Oriol Vinyals
Yori Zwols
119
244
0
23 Dec 2020
Predicting AC Optimal Power Flows: Combining Deep Learning and
  Lagrangian Dual Methods
Predicting AC Optimal Power Flows: Combining Deep Learning and Lagrangian Dual Methods
Ferdinando Fioretto
Terrence W.K. Mak
Pascal Van Hentenryck
AI4CE
81
199
0
19 Sep 2019
1