ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.07126
  4. Cited By
Lazy Queries Can Reduce Variance in Zeroth-order Optimization

Lazy Queries Can Reduce Variance in Zeroth-order Optimization

14 June 2022
Quan-Wu Xiao
Qing Ling
Tianyi Chen
ArXivPDFHTML

Papers citing "Lazy Queries Can Reduce Variance in Zeroth-order Optimization"

4 / 4 papers shown
Title
Communication-Efficient Stochastic Zeroth-Order Optimization for
  Federated Learning
Communication-Efficient Stochastic Zeroth-Order Optimization for Federated Learning
Wenzhi Fang
Ziyi Yu
Yuning Jiang
Yuanming Shi
Colin N. Jones
Yong Zhou
FedML
76
55
0
24 Jan 2022
Zeroth and First Order Stochastic Frank-Wolfe Algorithms for Constrained
  Optimization
Zeroth and First Order Stochastic Frank-Wolfe Algorithms for Constrained Optimization
Zeeshan Akhtar
K. Rajawat
18
6
0
14 Jul 2021
Online Boosting with Bandit Feedback
Online Boosting with Bandit Feedback
Nataly Brukhim
Elad Hazan
11
10
0
23 Jul 2020
Kernel-based methods for bandit convex optimization
Kernel-based methods for bandit convex optimization
Sébastien Bubeck
Ronen Eldan
Y. Lee
76
163
0
11 Jul 2016
1