ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.07842
  4. Cited By
Queried Unlabeled Data Improves and Robustifies Class-Incremental
  Learning

Queried Unlabeled Data Improves and Robustifies Class-Incremental Learning

15 June 2022
Tianlong Chen
Sijia Liu
Shiyu Chang
Lisa Amini
Zhangyang Wang
    CLL
ArXivPDFHTML

Papers citing "Queried Unlabeled Data Improves and Robustifies Class-Incremental Learning"

6 / 6 papers shown
Title
FETCH: A Memory-Efficient Replay Approach for Continual Learning in
  Image Classification
FETCH: A Memory-Efficient Replay Approach for Continual Learning in Image Classification
Markus Weißflog
P. Protzel
Peer Neubert
31
1
0
17 Jul 2024
Robustness-preserving Lifelong Learning via Dataset Condensation
Robustness-preserving Lifelong Learning via Dataset Condensation
Jinghan Jia
Yihua Zhang
Dogyoon Song
Sijia Liu
Alfred Hero
DD
26
3
0
07 Mar 2023
Towards Label-Efficient Incremental Learning: A Survey
Towards Label-Efficient Incremental Learning: A Survey
Mert Kilickaya
Joost van de Weijer
Yuki M. Asano
CLL
20
4
0
01 Feb 2023
Improved Baselines with Momentum Contrastive Learning
Improved Baselines with Momentum Contrastive Learning
Xinlei Chen
Haoqi Fan
Ross B. Girshick
Kaiming He
SSL
238
3,367
0
09 Mar 2020
Adversarial Machine Learning at Scale
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
256
3,108
0
04 Nov 2016
SMOTE: Synthetic Minority Over-sampling Technique
SMOTE: Synthetic Minority Over-sampling Technique
Nitesh V. Chawla
Kevin W. Bowyer
Lawrence Hall
W. Kegelmeyer
AI4TS
160
25,214
0
09 Jun 2011
1