ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.08558
20
6

How You Start Matters for Generalization

17 June 2022
Sameera Ramasinghe
L. MacDonald
M. Farazi
Hemanth Saratchandran
Simon Lucey
    ODL
    AI4CE
ArXivPDFHTML
Abstract

Characterizing the remarkable generalization properties of over-parameterized neural networks remains an open problem. In this paper, we promote a shift of focus towards initialization rather than neural architecture or (stochastic) gradient descent to explain this implicit regularization. Through a Fourier lens, we derive a general result for the spectral bias of neural networks and show that the generalization of neural networks is heavily tied to their initialization. Further, we empirically solidify the developed theoretical insights using practical, deep networks. Finally, we make a case against the controversial flat-minima conjecture and show that Fourier analysis grants a more reliable framework for understanding the generalization of neural networks.

View on arXiv
Comments on this paper