ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.09677
  4. Cited By
GraphFramEx: Towards Systematic Evaluation of Explainability Methods for
  Graph Neural Networks

GraphFramEx: Towards Systematic Evaluation of Explainability Methods for Graph Neural Networks

20 June 2022
Kenza Amara
Rex Ying
Zitao Zhang
Zhihao Han
Yinan Shan
U. Brandes
S. Schemm
Ce Zhang
ArXivPDFHTML

Papers citing "GraphFramEx: Towards Systematic Evaluation of Explainability Methods for Graph Neural Networks"

13 / 13 papers shown
Title
Framework GNN-AID: Graph Neural Network Analysis Interpretation and Defense
Framework GNN-AID: Graph Neural Network Analysis Interpretation and Defense
Kirill Lukyanov
Mikhail Drobyshevskiy
Georgii Sazonov
Mikhail Soloviov
Ilya Makarov
GNN
46
0
0
06 May 2025
Recent Advances in Malware Detection: Graph Learning and Explainability
Recent Advances in Malware Detection: Graph Learning and Explainability
Hossein Shokouhinejad
Roozbeh Razavi-Far
Hesamodin Mohammadian
Mahdi Rabbani
Samuel Ansong
Griffin Higgins
Ali Ghorbani
AAML
70
2
0
14 Feb 2025
On the Probability of Necessity and Sufficiency of Explaining Graph Neural Networks: A Lower Bound Optimization Approach
On the Probability of Necessity and Sufficiency of Explaining Graph Neural Networks: A Lower Bound Optimization Approach
Ruichu Cai
Yuxuan Zhu
Xuexin Chen
Yuan Fang
Min-man Wu
Jie Qiao
Z. Hao
48
7
0
31 Dec 2024
Explainable Graph Neural Networks Under Fire
Explainable Graph Neural Networks Under Fire
Zhong Li
Simon Geisler
Yuhang Wang
Stephan Günnemann
M. Leeuwen
AAML
40
0
0
10 Jun 2024
Feature Attribution with Necessity and Sufficiency via Dual-stage
  Perturbation Test for Causal Explanation
Feature Attribution with Necessity and Sufficiency via Dual-stage Perturbation Test for Causal Explanation
Xuexin Chen
Ruichu Cai
Zhengting Huang
Yuxuan Zhu
Julien Horwood
Zhifeng Hao
Zijian Li
Jose Miguel Hernandez-Lobato
AAML
36
2
0
13 Feb 2024
Unstructured and structured data: Can we have the best of both worlds
  with large language models?
Unstructured and structured data: Can we have the best of both worlds with large language models?
W. Tan
18
1
0
25 Apr 2023
A Survey of Explainable Graph Neural Networks: Taxonomy and Evaluation
  Metrics
A Survey of Explainable Graph Neural Networks: Taxonomy and Evaluation Metrics
Yiqiao Li
Jianlong Zhou
Sunny Verma
Fang Chen
XAI
31
39
0
26 Jul 2022
CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks
CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks
Ana Lucic
Maartje ter Hoeve
Gabriele Tolomei
Maarten de Rijke
Fabrizio Silvestri
110
142
0
05 Feb 2021
Explainability in Graph Neural Networks: A Taxonomic Survey
Explainability in Graph Neural Networks: A Taxonomic Survey
Hao Yuan
Haiyang Yu
Shurui Gui
Shuiwang Ji
167
591
0
31 Dec 2020
Geom-GCN: Geometric Graph Convolutional Networks
Geom-GCN: Geometric Graph Convolutional Networks
Hongbin Pei
Bingzhen Wei
Kevin Chen-Chuan Chang
Yu Lei
Bo Yang
GNN
169
1,078
0
13 Feb 2020
Multi-scale Attributed Node Embedding
Multi-scale Attributed Node Embedding
Benedek Rozemberczki
Carl Allen
Rik Sarkar
GNN
148
836
0
28 Sep 2019
MoleculeNet: A Benchmark for Molecular Machine Learning
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
172
1,775
0
02 Mar 2017
Interaction Networks for Learning about Objects, Relations and Physics
Interaction Networks for Learning about Objects, Relations and Physics
Peter W. Battaglia
Razvan Pascanu
Matthew Lai
Danilo Jimenez Rezende
Koray Kavukcuoglu
AI4CE
OCL
PINN
GNN
278
1,400
0
01 Dec 2016
1