ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.09992
  4. Cited By
Hyperparameter Importance of Quantum Neural Networks Across Small
  Datasets

Hyperparameter Importance of Quantum Neural Networks Across Small Datasets

IFIP Working Conference on Database Semantics (IWDS), 2022
20 June 2022
Charles Moussa
Jan N. van Rijn
Thomas Bäck
Vedran Dunjko
ArXiv (abs)PDFHTML

Papers citing "Hyperparameter Importance of Quantum Neural Networks Across Small Datasets"

9 / 9 papers shown
Title
QuXAI: Explainers for Hybrid Quantum Machine Learning Models
QuXAI: Explainers for Hybrid Quantum Machine Learning Models
Saikat Barua
Mostafizur Rahman
Shehenaz Khaled
Md Jafor Sadek
Rafiul Islam
Shahnewaz Siddique
192
2
0
15 May 2025
AQMLator -- An Auto Quantum Machine Learning E-Platform
AQMLator -- An Auto Quantum Machine Learning E-PlatformComputer Science (CS), 2024
Tomasz Rybotycki
Piotr Gawron
329
1
0
26 Sep 2024
On Optimizing Hyperparameters for Quantum Neural Networks
On Optimizing Hyperparameters for Quantum Neural Networks
Sabrina Herbst
Vincenzo De Maio
Ivona Brandić
247
4
0
27 Mar 2024
FissionFusion: Fast Geometric Generation and Hierarchical Souping for
  Medical Image Analysis
FissionFusion: Fast Geometric Generation and Hierarchical Souping for Medical Image Analysis
Santosh Sanjeev
Nuren Zhaksylyk
Ibrahim Almakky
Anees Ur Rehman Hashmi
Mohammad Areeb Qazi
Mohammad Yaqub
288
4
0
20 Mar 2024
A Hyperparameter Study for Quantum Kernel Methods
A Hyperparameter Study for Quantum Kernel MethodsQuantum Machine Intelligence (QMI), 2023
Sebastian Egginger
Alona Sakhnenko
J. M. Lorenz
198
13
0
18 Oct 2023
Application of quantum-inspired generative models to small molecular
  datasets
Application of quantum-inspired generative models to small molecular datasetsInternational Conference on Quantum Computing and Engineering (QCE), 2023
Charles Moussa
H. Wang
Mauricio Araya-Polo
T. Bäck
Vedran Dunjko
121
9
0
21 Apr 2023
QOC: Quantum On-Chip Training with Parameter Shift and Gradient Pruning
QOC: Quantum On-Chip Training with Parameter Shift and Gradient PruningDesign Automation Conference (DAC), 2022
Hanrui Wang
Zi-Chen Li
Jiaqi Gu
Yongshan Ding
David Z. Pan
Song Han
378
59
0
26 Feb 2022
Learning Curves for Decision Making in Supervised Machine Learning: A Survey
Learning Curves for Decision Making in Supervised Machine Learning: A SurveyMachine-mediated learning (ML), 2022
F. Mohr
Jan N. van Rijn
220
67
0
28 Jan 2022
QuantumNAT: Quantum Noise-Aware Training with Noise Injection, Quantization and Normalization
QuantumNAT: Quantum Noise-Aware Training with Noise Injection, Quantization and NormalizationDesign Automation Conference (DAC), 2021
Hanrui Wang
Jiaqi Gu
Yongshan Ding
Zi-Chen Li
Frederic T. Chong
David Z. Pan
Song Han
294
78
0
21 Oct 2021
1