Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2206.10915
Cited By
Understanding the effect of sparsity on neural networks robustness
22 June 2022
Lukas Timpl
R. Entezari
Hanie Sedghi
Behnam Neyshabur
O. Saukh
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Understanding the effect of sparsity on neural networks robustness"
11 / 11 papers shown
Title
Holistic Adversarially Robust Pruning
Qi Zhao
Christian Wressnegger
77
8
0
19 Dec 2024
Dynamic Sparse Training versus Dense Training: The Unexpected Winner in Image Corruption Robustness
Boqian Wu
Q. Xiao
Shunxin Wang
N. Strisciuglio
Mykola Pechenizkiy
M. V. Keulen
D. Mocanu
Elena Mocanu
OOD
3DH
52
0
0
03 Oct 2024
REDS: Resource-Efficient Deep Subnetworks for Dynamic Resource Constraints
Francesco Corti
Balz Maag
Joachim Schauer
U. Pferschy
O. Saukh
24
2
0
22 Nov 2023
Efficient Neural Networks for Tiny Machine Learning: A Comprehensive Review
M. Lê
Pierre Wolinski
Julyan Arbel
32
8
0
20 Nov 2023
Sparse Mixture Once-for-all Adversarial Training for Efficient In-Situ Trade-Off Between Accuracy and Robustness of DNNs
Souvik Kundu
Sairam Sundaresan
S. N. Sridhar
Shunlin Lu
Han Tang
P. Beerel
AAML
MoE
36
4
0
27 Dec 2022
Studying the impact of magnitude pruning on contrastive learning methods
Francesco Corti
R. Entezari
Sara Hooker
D. Bacciu
O. Saukh
11
5
0
01 Jul 2022
Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks
Torsten Hoefler
Dan Alistarh
Tal Ben-Nun
Nikoli Dryden
Alexandra Peste
MQ
139
684
0
31 Jan 2021
Towards Learning Convolutions from Scratch
Behnam Neyshabur
SSL
216
71
0
27 Jul 2020
What is the State of Neural Network Pruning?
Davis W. Blalock
Jose Javier Gonzalez Ortiz
Jonathan Frankle
John Guttag
183
1,027
0
06 Mar 2020
Comparing Rewinding and Fine-tuning in Neural Network Pruning
Alex Renda
Jonathan Frankle
Michael Carbin
222
382
0
05 Mar 2020
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
254
5,833
0
08 Jul 2016
1