Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2206.11719
Cited By
AST-Probe: Recovering abstract syntax trees from hidden representations of pre-trained language models
23 June 2022
José Antonio Hernández López
M. Weyssow
Jesús Sánchez Cuadrado
H. Sahraoui
Re-assign community
ArXiv
PDF
HTML
Papers citing
"AST-Probe: Recovering abstract syntax trees from hidden representations of pre-trained language models"
7 / 7 papers shown
Title
Deep Learning for Code Intelligence: Survey, Benchmark and Toolkit
Yao Wan
Yang He
Zhangqian Bi
Jianguo Zhang
Hongyu Zhang
Yulei Sui
Guandong Xu
Hai Jin
Philip S. Yu
20
20
0
30 Dec 2023
The EarlyBIRD Catches the Bug: On Exploiting Early Layers of Encoder Models for More Efficient Code Classification
Anastasiia Grishina
Max Hort
Leon Moonen
19
6
0
08 May 2023
Towards Efficient Fine-tuning of Pre-trained Code Models: An Experimental Study and Beyond
Ensheng Shi
Yanlin Wang
Hongyu Zhang
Lun Du
Shi Han
Dongmei Zhang
Hongbin Sun
17
41
0
11 Apr 2023
CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation
Yue Wang
Weishi Wang
Shafiq R. Joty
S. Hoi
204
1,451
0
02 Sep 2021
Probing Classifiers: Promises, Shortcomings, and Advances
Yonatan Belinkov
221
402
0
24 Feb 2021
CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding and Generation
Shuai Lu
Daya Guo
Shuo Ren
Junjie Huang
Alexey Svyatkovskiy
...
Nan Duan
Neel Sundaresan
Shao Kun Deng
Shengyu Fu
Shujie Liu
ELM
190
853
0
09 Feb 2021
What you can cram into a single vector: Probing sentence embeddings for linguistic properties
Alexis Conneau
Germán Kruszewski
Guillaume Lample
Loïc Barrault
Marco Baroni
199
876
0
03 May 2018
1