ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.12241
  4. Cited By
CoSP: Co-supervised pretraining of pocket and ligand

CoSP: Co-supervised pretraining of pocket and ligand

23 June 2022
Zhangyang Gao
Cheng Tan
Lirong Wu
Stan Z. Li
ArXivPDFHTML

Papers citing "CoSP: Co-supervised pretraining of pocket and ligand"

8 / 8 papers shown
Title
DrugCLIP: Contrastive Protein-Molecule Representation Learning for
  Virtual Screening
DrugCLIP: Contrastive Protein-Molecule Representation Learning for Virtual Screening
Bowen Gao
Bo Qiang
Haichuan Tan
Minsi Ren
Yinjun Jia
Minsi Lu
Jingjing Liu
Wei-Ying Ma
Yanyan Lan
13
8
0
10 Oct 2023
Knowledge-Design: Pushing the Limit of Protein Design via Knowledge
  Refinement
Knowledge-Design: Pushing the Limit of Protein Design via Knowledge Refinement
Zhangyang Gao
Cheng Tan
Stan Z. Li
19
15
0
20 May 2023
Cross-Gate MLP with Protein Complex Invariant Embedding is A One-Shot
  Antibody Designer
Cross-Gate MLP with Protein Complex Invariant Embedding is A One-Shot Antibody Designer
Cheng Tan
Zhangyang Gao
Lirong Wu
Jun-Xiong Xia
Jiangbin Zheng
Xihong Yang
Yue Liu
Bozhen Hu
Stan Z. Li
20
14
0
21 Apr 2023
AlphaDesign: A graph protein design method and benchmark on AlphaFoldDB
AlphaDesign: A graph protein design method and benchmark on AlphaFoldDB
Zhangyang Gao
Cheng Tan
Stan Z. Li
132
52
0
01 Feb 2022
OntoProtein: Protein Pretraining With Gene Ontology Embedding
OntoProtein: Protein Pretraining With Gene Ontology Embedding
Ningyu Zhang
Zhen Bi
Xiaozhuan Liang
Shuyang Cheng
Haosen Hong
Shumin Deng
J. Lian
Qiang Zhang
Huajun Chen
88
86
0
23 Jan 2022
Pre-training Molecular Graph Representation with 3D Geometry
Pre-training Molecular Graph Representation with 3D Geometry
Shengchao Liu
Hanchen Wang
Weiyang Liu
Joan Lasenby
Hongyu Guo
Jian Tang
112
294
0
07 Oct 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
188
1,218
0
08 Jan 2021
MoleculeNet: A Benchmark for Molecular Machine Learning
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
154
1,748
0
02 Mar 2017
1