Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
2206.14697
Cited By
v1
v2
v3 (latest)
Hidden Parameter Recurrent State Space Models For Changing Dynamics Scenarios
International Conference on Learning Representations (ICLR), 2022
29 June 2022
Vaisakh Shaj
Le Chen
Rohit Sonker
P. Becker
Gerhard Neumann
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Hidden Parameter Recurrent State Space Models For Changing Dynamics Scenarios"
6 / 6 papers shown
Title
Uncertainty Representations in State-Space Layers for Deep Reinforcement Learning under Partial Observability
Carlos E. Luis
A. Bottero
Julia Vinogradska
Felix Berkenkamp
Jan Peters
354
1
0
20 Feb 2025
Adaptive World Models: Learning Behaviors by Latent Imagination Under Non-Stationarity
Emiliyan Gospodinov
Vaisakh Shaj
P. Becker
Stefan Geyer
Gerhard Neumann
186
0
0
02 Nov 2024
KalMamba: Towards Efficient Probabilistic State Space Models for RL under Uncertainty
P. Becker
Niklas Freymuth
Gerhard Neumann
Mamba
210
4
0
21 Jun 2024
Zero-Shot Reinforcement Learning via Function Encoders
Tyler Ingebrand
Amy Zhang
Ufuk Topcu
OffRL
357
12
0
30 Jan 2024
Multi Time Scale World Models
Neural Information Processing Systems (NeurIPS), 2023
Vaisakh Shaj
Saleh Gholam Zadeh
Ozan Demir
L. R. Douat
Gerhard Neumann
AI4CE
199
5
0
27 Oct 2023
Safe & Accurate at Speed with Tendons: A Robot Arm for Exploring Dynamic Motion
Simon Guist
Jan Schneider
Hao Ma
Tianyu Cui
V. Berenz
...
Felix Gruninger
M. Muhlebach
J. Fiene
Bernhard Schölkopf
Le Chen
232
10
0
05 Jul 2023
1