Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2206.14882
Cited By
LIDL: Local Intrinsic Dimension Estimation Using Approximate Likelihood
29 June 2022
Piotr Tempczyk
Rafał Michaluk
Łukasz Garncarek
Przemysław Spurek
Jacek Tabor
Adam Goliñski
Re-assign community
ArXiv
PDF
HTML
Papers citing
"LIDL: Local Intrinsic Dimension Estimation Using Approximate Likelihood"
15 / 15 papers shown
Title
A Geometric Framework for Understanding Memorization in Generative Models
Brendan Leigh Ross
Hamidreza Kamkari
Tongzi Wu
Rasa Hosseinzadeh
Zhaoyan Liu
George Stein
Jesse C. Cresswell
G. Loaiza-Ganem
40
6
0
31 Oct 2024
A Wiener process perspective on local intrinsic dimension estimation methods
Piotr Tempczyk
Łukasz Garncarek
Dominik Filipiak
Adam Kurpisz
29
1
0
24 Jun 2024
A Geometric View of Data Complexity: Efficient Local Intrinsic Dimension Estimation with Diffusion Models
Hamidreza Kamkari
Brendan Leigh Ross
Rasa Hosseinzadeh
Jesse C. Cresswell
G. Loaiza-Ganem
DiffM
32
11
0
05 Jun 2024
On gauge freedom, conservativity and intrinsic dimensionality estimation in diffusion models
Christian Horvat
J. Pfister
DiffM
13
8
0
06 Feb 2024
Dimensionality-Aware Outlier Detection: Theoretical and Experimental Analysis
Alastair Anderberg
James Bailey
R. Campello
Michael E. Houle
Henrique O. Marques
Milovs Radovanović
Arthur Zimek
31
0
0
10 Jan 2024
Adversarial Estimation of Topological Dimension with Harmonic Score Maps
Eric C. Yeats
Cameron Darwin
Frank Liu
Hai Li
13
2
0
11 Dec 2023
A survey of manifold learning and its applications for multimedia
Hannes Fassold
34
1
0
08 Sep 2023
One-Line-of-Code Data Mollification Improves Optimization of Likelihood-based Generative Models
Ba-Hien Tran
Giulio Franzese
Pietro Michiardi
Maurizio Filippone
DiffM
23
3
0
30 May 2023
Denoising Deep Generative Models
G. Loaiza-Ganem
Brendan Leigh Ross
Luhuan Wu
John P. Cunningham
Jesse C. Cresswell
Anthony L. Caterini
DiffM
24
5
0
30 Nov 2022
Relating Regularization and Generalization through the Intrinsic Dimension of Activations
Bradley Brown
Jordan Juravsky
Anthony L. Caterini
G. Loaiza-Ganem
28
3
0
23 Nov 2022
Intrinsic Dimensionality Estimation within Tight Localities: A Theoretical and Experimental Analysis
Laurent Amsaleg
Oussama Chelly
Michael E. Houle
Ken-ichi Kawarabayashi
Miloš Radovanović
Weeris Treeratanajaru
31
50
0
29 Sep 2022
Impact of dataset size and long-term ECoG-based BCI usage on deep learning decoders performance
Maciej Śliwowski
Matthieu Martin
Antoine Souloumiac
P. Blanchart
T. Aksenova
20
6
0
08 Sep 2022
Verifying the Union of Manifolds Hypothesis for Image Data
Bradley Brown
Anthony L. Caterini
Brendan Leigh Ross
Jesse C. Cresswell
G. Loaiza-Ganem
19
39
0
06 Jul 2022
Spread Flows for Manifold Modelling
Mingtian Zhang
Yitong Sun
Chen Zhang
Steven G. McDonagh
AI4CE
15
2
0
29 Sep 2021
The Intrinsic Dimension of Images and Its Impact on Learning
Phillip E. Pope
Chen Zhu
Ahmed Abdelkader
Micah Goldblum
Tom Goldstein
189
259
0
18 Apr 2021
1