Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2206.15144
Cited By
Neural Networks can Learn Representations with Gradient Descent
30 June 2022
Alexandru Damian
Jason D. Lee
Mahdi Soltanolkotabi
SSL
MLT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Neural Networks can Learn Representations with Gradient Descent"
22 / 22 papers shown
Title
Contextures: Representations from Contexts
Runtian Zhai
Kai Yang
Che-Ping Tsai
Burak Varici
Zico Kolter
Pradeep Ravikumar
89
0
0
02 May 2025
When is Task Vector Provably Effective for Model Editing? A Generalization Analysis of Nonlinear Transformers
Hongkang Li
Yihua Zhang
Shuai Zhang
M. Wang
Sijia Liu
Pin-Yu Chen
MoMe
60
2
0
15 Apr 2025
The Complexity of Learning Sparse Superposed Features with Feedback
Akash Kumar
122
0
0
08 Feb 2025
Learning Gaussian Multi-Index Models with Gradient Flow: Time Complexity and Directional Convergence
Berfin Simsek
Amire Bendjeddou
Daniel Hsu
44
0
0
13 Nov 2024
Robust Feature Learning for Multi-Index Models in High Dimensions
Alireza Mousavi-Hosseini
Adel Javanmard
Murat A. Erdogdu
OOD
AAML
42
1
0
21 Oct 2024
Sharper Guarantees for Learning Neural Network Classifiers with Gradient Methods
Hossein Taheri
Christos Thrampoulidis
Arya Mazumdar
MLT
31
0
0
13 Oct 2024
Learning Multi-Index Models with Neural Networks via Mean-Field Langevin Dynamics
Alireza Mousavi-Hosseini
Denny Wu
Murat A. Erdogdu
MLT
AI4CE
27
6
0
14 Aug 2024
How Neural Networks Learn the Support is an Implicit Regularization Effect of SGD
Pierfrancesco Beneventano
Andrea Pinto
Tomaso A. Poggio
MLT
27
1
0
17 Jun 2024
Repetita Iuvant: Data Repetition Allows SGD to Learn High-Dimensional Multi-Index Functions
Luca Arnaboldi
Yatin Dandi
Florent Krzakala
Luca Pesce
Ludovic Stephan
61
12
0
24 May 2024
Fundamental limits of Non-Linear Low-Rank Matrix Estimation
Pierre Mergny
Justin Ko
Florent Krzakala
Lenka Zdeborová
27
1
0
07 Mar 2024
A Theory of Non-Linear Feature Learning with One Gradient Step in Two-Layer Neural Networks
Behrad Moniri
Donghwan Lee
Hamed Hassani
Edgar Dobriban
MLT
26
19
0
11 Oct 2023
Gradient-Based Feature Learning under Structured Data
Alireza Mousavi-Hosseini
Denny Wu
Taiji Suzuki
Murat A. Erdogdu
MLT
32
18
0
07 Sep 2023
Pareto Frontiers in Neural Feature Learning: Data, Compute, Width, and Luck
Benjamin L. Edelman
Surbhi Goel
Sham Kakade
Eran Malach
Cyril Zhang
43
8
0
07 Sep 2023
On Single Index Models beyond Gaussian Data
Joan Bruna
Loucas Pillaud-Vivien
Aaron Zweig
13
10
0
28 Jul 2023
ReLU Neural Networks with Linear Layers are Biased Towards Single- and Multi-Index Models
Suzanna Parkinson
Greg Ongie
Rebecca Willett
60
6
0
24 May 2023
Smoothing the Landscape Boosts the Signal for SGD: Optimal Sample Complexity for Learning Single Index Models
Alexandru Damian
Eshaan Nichani
Rong Ge
Jason D. Lee
MLT
34
33
0
18 May 2023
Provable Guarantees for Nonlinear Feature Learning in Three-Layer Neural Networks
Eshaan Nichani
Alexandru Damian
Jason D. Lee
MLT
33
13
0
11 May 2023
Learning time-scales in two-layers neural networks
Raphael Berthier
Andrea Montanari
Kangjie Zhou
36
33
0
28 Feb 2023
Learning Lipschitz Functions by GD-trained Shallow Overparameterized ReLU Neural Networks
Ilja Kuzborskij
Csaba Szepesvári
21
4
0
28 Dec 2022
Learning Single-Index Models with Shallow Neural Networks
A. Bietti
Joan Bruna
Clayton Sanford
M. Song
162
67
0
27 Oct 2022
Hidden Progress in Deep Learning: SGD Learns Parities Near the Computational Limit
Boaz Barak
Benjamin L. Edelman
Surbhi Goel
Sham Kakade
Eran Malach
Cyril Zhang
25
123
0
18 Jul 2022
Random Feature Amplification: Feature Learning and Generalization in Neural Networks
Spencer Frei
Niladri S. Chatterji
Peter L. Bartlett
MLT
24
29
0
15 Feb 2022
1