Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2207.00046
Cited By
Performative Reinforcement Learning
30 June 2022
Debmalya Mandal
Stelios Triantafyllou
Goran Radanović
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Performative Reinforcement Learning"
13 / 13 papers shown
Title
Independent Learning in Performative Markov Potential Games
Rilind Sahitaj
Paulius Sasnauskas
Yiğit Yalın
Debmalya Mandal
Goran Radanović
31
0
0
29 Apr 2025
Decision-Dependent Stochastic Optimization: The Role of Distribution Dynamics
Zhiyu He
S. Bolognani
Florian Dorfler
Michael Muehlebach
61
0
0
10 Mar 2025
Reciprocal Learning
Julian Rodemann
Christoph Jansen
G. Schollmeyer
FedML
17
0
0
12 Aug 2024
Exploring Loss Landscapes through the Lens of Spin Glass Theory
Hao Liao
Wei Zhang
Zhanyi Huang
Zexiao Long
Mingyang Zhou
Xiaoqun Wu
Rui Mao
Chi Ho Yeung
30
2
0
30 Jul 2024
Performative Reinforcement Learning in Gradually Shifting Environments
Ben Rank
Stelios Triantafyllou
Debmalya Mandal
Goran Radanović
OffRL
16
5
0
15 Feb 2024
Adaptive Discounting of Training Time Attacks
Ridhima Bector
Abhay M. S. Aradhya
Chai Quek
Zinovi Rabinovich
AAML
16
0
0
05 Jan 2024
Performative Time-Series Forecasting
Zhiyuan Zhao
Alexander Rodríguez
B. Prakash
AI4TS
16
4
0
09 Oct 2023
Zero-Regret Performative Prediction Under Inequality Constraints
Wenjing Yan
Xuanyu Cao
13
4
0
22 Sep 2023
Semi-supervised Batch Learning From Logged Data
Gholamali Aminian
Armin Behnamnia
R. Vega
Laura Toni
Chengchun Shi
Hamid R. Rabiee
Omar Rivasplata
Miguel R. D. Rodrigues
OffRL
6
0
0
15 Sep 2022
Robust Reinforcement Learning as a Stackelberg Game via Adaptively-Regularized Adversarial Training
Peide Huang
Mengdi Xu
Fei Fang
Ding Zhao
40
37
0
19 Feb 2022
Outside the Echo Chamber: Optimizing the Performative Risk
John Miller
Juan C. Perdomo
Tijana Zrnic
65
93
0
17 Feb 2021
Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems
Sergey Levine
Aviral Kumar
George Tucker
Justin Fu
OffRL
GP
321
1,662
0
04 May 2020
How Algorithmic Confounding in Recommendation Systems Increases Homogeneity and Decreases Utility
A. Chaney
Brandon M Stewart
Barbara E. Engelhardt
CML
161
281
0
30 Oct 2017
1