ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.00400
  4. Cited By
WNet: A data-driven dual-domain denoising model for sparse-view computed
  tomography with a trainable reconstruction layer

WNet: A data-driven dual-domain denoising model for sparse-view computed tomography with a trainable reconstruction layer

1 July 2022
Theodor Cheslerean-Boghiu
Felix C. Hofmann
M. Schultheiss
F. Pfeiffer
Daniela Pfeiffer
Tobias Lasser
    MedIm
    OOD
ArXivPDFHTML

Papers citing "WNet: A data-driven dual-domain denoising model for sparse-view computed tomography with a trainable reconstruction layer"

3 / 3 papers shown
Title
MVMS-RCN: A Dual-Domain Unfolding CT Reconstruction with
  Multi-sparse-view and Multi-scale Refinement-correction
MVMS-RCN: A Dual-Domain Unfolding CT Reconstruction with Multi-sparse-view and Multi-scale Refinement-correction
Xiaohong Fan
Ke-long Chen
Huaming Yi
Yin Yang
Jianping Zhang
41
0
0
27 May 2024
Learning to Distill Global Representation for Sparse-View CT
Learning to Distill Global Representation for Sparse-View CT
Zilong Li
Chenglong Ma
Jie Chen
Junping Zhang
Hongming Shan
21
9
0
16 Aug 2023
Improving Automated Hemorrhage Detection in Sparse-view Computed
  Tomography via Deep Convolutional Neural Network based Artifact Reduction
Improving Automated Hemorrhage Detection in Sparse-view Computed Tomography via Deep Convolutional Neural Network based Artifact Reduction
Johannes M. Thalhammer
M. Schultheiss
Tina Dorosti
Tobias Lasser
F. Pfeiffer
Daniela Pfeiffer
F. Schaff
8
1
0
16 Mar 2023
1