Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2207.00694
Cited By
Efficient Adversarial Training With Data Pruning
1 July 2022
Maximilian Kaufmann
Yiren Zhao
Ilia Shumailov
Robert D. Mullins
Nicolas Papernot
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Efficient Adversarial Training With Data Pruning"
5 / 5 papers shown
Title
Repeated Random Sampling for Minimizing the Time-to-Accuracy of Learning
Patrik Okanovic
R. Waleffe
Vasilis Mageirakos
Konstantinos E. Nikolakakis
Amin Karbasi
Dionysis Kalogerias
Nezihe Merve Gürel
Theodoros Rekatsinas
DD
45
12
0
28 May 2023
Less is More: Data Pruning for Faster Adversarial Training
Yize Li
Pu Zhao
X. Lin
B. Kailkhura
Ryan Goldh
AAML
15
9
0
23 Feb 2023
Unsolved Problems in ML Safety
Dan Hendrycks
Nicholas Carlini
John Schulman
Jacob Steinhardt
186
273
0
28 Sep 2021
Understanding the Error in Evaluating Adversarial Robustness
Pengfei Xia
Ziqiang Li
Hongjing Niu
Bin Li
AAML
ELM
34
5
0
07 Jan 2021
Shield: Fast, Practical Defense and Vaccination for Deep Learning using JPEG Compression
Nilaksh Das
Madhuri Shanbhogue
Shang-Tse Chen
Fred Hohman
Siwei Li
Li-Wei Chen
Michael E. Kounavis
Duen Horng Chau
FedML
AAML
43
224
0
19 Feb 2018
1