ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.00938
  4. Cited By
Interpretable by Design: Learning Predictors by Composing Interpretable
  Queries

Interpretable by Design: Learning Predictors by Composing Interpretable Queries

3 July 2022
Aditya Chattopadhyay
Stewart Slocum
B. Haeffele
René Vidal
D. Geman
ArXivPDFHTML

Papers citing "Interpretable by Design: Learning Predictors by Composing Interpretable Queries"

6 / 6 papers shown
Title
3VL: Using Trees to Improve Vision-Language Models' Interpretability
3VL: Using Trees to Improve Vision-Language Models' Interpretability
Nir Yellinek
Leonid Karlinsky
Raja Giryes
CoGe
VLM
44
4
0
28 Dec 2023
Variational Information Pursuit for Interpretable Predictions
Variational Information Pursuit for Interpretable Predictions
Aditya Chattopadhyay
Kwan Ho Ryan Chan
B. Haeffele
D. Geman
René Vidal
DRL
8
10
0
06 Feb 2023
Natural Language Descriptions of Deep Visual Features
Natural Language Descriptions of Deep Visual Features
Evan Hernandez
Sarah Schwettmann
David Bau
Teona Bagashvili
Antonio Torralba
Jacob Andreas
MILM
191
92
0
26 Jan 2022
A Rate-Distortion Framework for Explaining Black-box Model Decisions
A Rate-Distortion Framework for Explaining Black-box Model Decisions
Stefan Kolek
Duc Anh Nguyen
Ron Levie
Joan Bruna
Gitta Kutyniok
14
14
0
12 Oct 2021
On Completeness-aware Concept-Based Explanations in Deep Neural Networks
On Completeness-aware Concept-Based Explanations in Deep Neural Networks
Chih-Kuan Yeh
Been Kim
Sercan Ö. Arik
Chun-Liang Li
Tomas Pfister
Pradeep Ravikumar
FAtt
117
293
0
17 Oct 2019
Active Testing for Face Detection and Localization
Active Testing for Face Detection and Localization
Raphael Sznitman
Bruno Michel Jedynak
CVBM
VLM
57
80
0
27 Mar 2010
1