Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2207.01375
Cited By
GraphVid: It Only Takes a Few Nodes to Understand a Video
4 July 2022
Eitan Kosman
Dotan Di Castro
GNN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"GraphVid: It Only Takes a Few Nodes to Understand a Video"
7 / 7 papers shown
Title
VidTr: Video Transformer Without Convolutions
Yanyi Zhang
Xinyu Li
Chunhui Liu
Bing Shuai
Yi Zhu
Biagio Brattoli
Hao Chen
I. Marsic
Joseph Tighe
ViT
124
178
0
23 Apr 2021
VATT: Transformers for Multimodal Self-Supervised Learning from Raw Video, Audio and Text
Hassan Akbari
Liangzhe Yuan
Rui Qian
Wei-Hong Chuang
Shih-Fu Chang
Yin Cui
Boqing Gong
ViT
231
573
0
22 Apr 2021
Superpixels and Graph Convolutional Neural Networks for Efficient Detection of Nutrient Deficiency Stress from Aerial Imagery
Saba Dadsetan
David Pichler
David Wilson
N. Hovakimyan
Jennifer Hobbs
33
6
0
20 Apr 2021
Is Space-Time Attention All You Need for Video Understanding?
Gedas Bertasius
Heng Wang
Lorenzo Torresani
ViT
278
1,939
0
09 Feb 2021
Video Transformer Network
Daniel Neimark
Omri Bar
Maya Zohar
Dotan Asselmann
ViT
193
375
0
01 Feb 2021
Superpixels: An Evaluation of the State-of-the-Art
David Stutz
Alexander Hermans
Bastian Leibe
SupR
57
468
0
06 Dec 2016
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
234
1,801
0
25 Nov 2016
1