ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.03367
  4. Cited By
Joint Super-Resolution and Inverse Tone-Mapping: A Feature Decomposition
  Aggregation Network and A New Benchmark

Joint Super-Resolution and Inverse Tone-Mapping: A Feature Decomposition Aggregation Network and A New Benchmark

7 July 2022
Gang Xu
Yuchen Yang
Liang Wang
Xiantong Zhen
Jun Xu
    SupR
ArXivPDFHTML

Papers citing "Joint Super-Resolution and Inverse Tone-Mapping: A Feature Decomposition Aggregation Network and A New Benchmark"

4 / 4 papers shown
Title
Learning a Practical SDR-to-HDRTV Up-conversion using New Dataset and
  Degradation Models
Learning a Practical SDR-to-HDRTV Up-conversion using New Dataset and Degradation Models
Cheng Guo
Leidong Fan
Ziyu Xue
Xiuhua Jiang
19
13
0
23 Mar 2023
Temporal Modulation Network for Controllable Space-Time Video
  Super-Resolution
Temporal Modulation Network for Controllable Space-Time Video Super-Resolution
Gang Xu
Jun Xu
Zhen Li
Liang Wang
Xing Sun
Ming-Ming Cheng
SupR
65
91
0
21 Apr 2021
Lightweight Image Super-Resolution with Information Multi-distillation
  Network
Lightweight Image Super-Resolution with Information Multi-distillation Network
Zheng Hui
Xinbo Gao
Yunchu Yang
Xiumei Wang
SupR
68
867
0
26 Sep 2019
Real-Time Single Image and Video Super-Resolution Using an Efficient
  Sub-Pixel Convolutional Neural Network
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
Wenzhe Shi
Jose Caballero
Ferenc Huszár
J. Totz
Andrew P. Aitken
Rob Bishop
Daniel Rueckert
Zehan Wang
SupR
195
5,175
0
16 Sep 2016
1