ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.03470
  4. Cited By
For Learning in Symmetric Teams, Local Optima are Global Nash Equilibria

For Learning in Symmetric Teams, Local Optima are Global Nash Equilibria

7 July 2022
Scott Emmons
Caspar Oesterheld
Andrew Critch
Vincent Conitzer
Stuart J. Russell
ArXiv (abs)PDFHTML

Papers citing "For Learning in Symmetric Teams, Local Optima are Global Nash Equilibria"

3 / 3 papers shown
Title
A dataset of questions on decision-theoretic reasoning in Newcomb-like problems
A dataset of questions on decision-theoretic reasoning in Newcomb-like problems
Caspar Oesterheld
Emery Cooper
Miles Kodama
Linh Chi Nguyen
Ethan Perez
146
1
0
15 Nov 2024
Imperfect-Recall Games: Equilibrium Concepts and Their Complexity
Imperfect-Recall Games: Equilibrium Concepts and Their Complexity
Emanuel Tewolde
B. Zhang
Caspar Oesterheld
Manolis Zampetakis
Tuomas Sandholm
Paul W. Goldberg
Vincent Conitzer
48
5
0
23 Jun 2024
Efficiently Computing Nash Equilibria in Adversarial Team Markov Games
Efficiently Computing Nash Equilibria in Adversarial Team Markov Games
Fivos Kalogiannis
Ioannis Anagnostides
Ioannis Panageas
Emmanouil-Vasileios Vlatakis-Gkaragkounis
Vaggos Chatziafratis
S. Stavroulakis
73
13
0
03 Aug 2022
1