Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2207.05748
Cited By
Physics-Informed Deep Neural Operator Networks
8 July 2022
S. Goswami
Aniruddha Bora
Yue Yu
George Karniadakis
PINN
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Physics-Informed Deep Neural Operator Networks"
16 / 16 papers shown
Title
Accelerating Multiscale Modeling with Hybrid Solvers: Coupling FEM and Neural Operators with Domain Decomposition
Wei Wang
Maryam Hakimzadeh
Haihui Ruan
Somdatta Goswami
AI4CE
27
0
0
15 Apr 2025
Data-Efficient Kernel Methods for Learning Differential Equations and Their Solution Operators: Algorithms and Error Analysis
Yasamin Jalalian
Juan Felipe Osorio Ramirez
Alexander W. Hsu
Bamdad Hosseini
H. Owhadi
39
0
0
02 Mar 2025
Verification and Validation for Trustworthy Scientific Machine Learning
John D. Jakeman
Lorena A. Barba
J. Martins
Thomas O'Leary-Roseberry
AI4CE
56
0
0
21 Feb 2025
DGNO: A Novel Physics-aware Neural Operator for Solving Forward and Inverse PDE Problems based on Deep, Generative Probabilistic Modeling
Yaohua Zang
P. Koutsourelakis
AI4CE
52
0
0
10 Feb 2025
State-space models are accurate and efficient neural operators for dynamical systems
Zheyuan Hu
Nazanin Ahmadi Daryakenari
Qianli Shen
Kenji Kawaguchi
George Karniadakis
Mamba
AI4CE
64
10
0
28 Jan 2025
Solving Sparse Finite Element Problems on Neuromorphic Hardware
Bradley H. Theilman
J. Aimone
34
0
0
17 Jan 2025
Using Linearized Optimal Transport to Predict the Evolution of Stochastic Particle Systems
Nicholas Karris
Evangelos A. Nikitopoulos
Ioannis G. Kevrekidis
Seungjoon Lee
Alexander Cloninger
OT
30
0
0
10 Jan 2025
A physics-informed transformer neural operator for learning generalized solutions of initial boundary value problems
Sumanth Kumar Boya
Deepak Subramani
AI4CE
94
0
0
12 Dec 2024
Beyond Closure Models: Learning Chaotic-Systems via Physics-Informed Neural Operators
Chuwei Wang
Julius Berner
Zongyi Li
Di Zhou
Jiayun Wang
Jane Bae
Anima Anandkumar
AI4CE
28
1
0
09 Aug 2024
PINN surrogate of Li-ion battery models for parameter inference. Part II: Regularization and application of the pseudo-2D model
M. Hassanaly
Peter J. Weddle
Ryan N. King
Subhayan De
Alireza Doostan
Corey R. Randall
Eric J. Dufek
Andrew M. Colclasure
Kandler Smith
14
6
0
28 Dec 2023
Generic bounds on the approximation error for physics-informed (and) operator learning
Tim De Ryck
Siddhartha Mishra
PINN
59
58
0
23 May 2022
Scalable algorithms for physics-informed neural and graph networks
K. Shukla
Mengjia Xu
N. Trask
George Karniadakis
PINN
AI4CE
59
39
0
16 May 2022
Multiwavelet-based Operator Learning for Differential Equations
Gaurav Gupta
Xiongye Xiao
P. Bogdan
124
198
0
28 Sep 2021
Arbitrary-Depth Universal Approximation Theorems for Operator Neural Networks
Annan Yu
Chloe Becquey
Diana Halikias
Matthew Esmaili Mallory
Alex Townsend
57
8
0
23 Sep 2021
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
203
2,272
0
18 Oct 2020
An Energy Approach to the Solution of Partial Differential Equations in Computational Mechanics via Machine Learning: Concepts, Implementation and Applications
E. Samaniego
C. Anitescu
S. Goswami
Vien Minh Nguyen-Thanh
Hongwei Guo
Khader M. Hamdia
Timon Rabczuk
X. Zhuang
PINN
AI4CE
145
1,333
0
27 Aug 2019
1