ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.05748
  4. Cited By
Physics-Informed Deep Neural Operator Networks

Physics-Informed Deep Neural Operator Networks

8 July 2022
S. Goswami
Aniruddha Bora
Yue Yu
George Karniadakis
    PINN
    AI4CE
ArXivPDFHTML

Papers citing "Physics-Informed Deep Neural Operator Networks"

16 / 16 papers shown
Title
Accelerating Multiscale Modeling with Hybrid Solvers: Coupling FEM and Neural Operators with Domain Decomposition
Accelerating Multiscale Modeling with Hybrid Solvers: Coupling FEM and Neural Operators with Domain Decomposition
Wei Wang
Maryam Hakimzadeh
Haihui Ruan
Somdatta Goswami
AI4CE
27
0
0
15 Apr 2025
Data-Efficient Kernel Methods for Learning Differential Equations and Their Solution Operators: Algorithms and Error Analysis
Data-Efficient Kernel Methods for Learning Differential Equations and Their Solution Operators: Algorithms and Error Analysis
Yasamin Jalalian
Juan Felipe Osorio Ramirez
Alexander W. Hsu
Bamdad Hosseini
H. Owhadi
39
0
0
02 Mar 2025
Verification and Validation for Trustworthy Scientific Machine Learning
Verification and Validation for Trustworthy Scientific Machine Learning
John D. Jakeman
Lorena A. Barba
J. Martins
Thomas O'Leary-Roseberry
AI4CE
56
0
0
21 Feb 2025
DGNO: A Novel Physics-aware Neural Operator for Solving Forward and Inverse PDE Problems based on Deep, Generative Probabilistic Modeling
Yaohua Zang
P. Koutsourelakis
AI4CE
52
0
0
10 Feb 2025
State-space models are accurate and efficient neural operators for dynamical systems
State-space models are accurate and efficient neural operators for dynamical systems
Zheyuan Hu
Nazanin Ahmadi Daryakenari
Qianli Shen
Kenji Kawaguchi
George Karniadakis
Mamba
AI4CE
64
10
0
28 Jan 2025
Solving Sparse Finite Element Problems on Neuromorphic Hardware
Solving Sparse Finite Element Problems on Neuromorphic Hardware
Bradley H. Theilman
J. Aimone
34
0
0
17 Jan 2025
Using Linearized Optimal Transport to Predict the Evolution of Stochastic Particle Systems
Using Linearized Optimal Transport to Predict the Evolution of Stochastic Particle Systems
Nicholas Karris
Evangelos A. Nikitopoulos
Ioannis G. Kevrekidis
Seungjoon Lee
Alexander Cloninger
OT
30
0
0
10 Jan 2025
A physics-informed transformer neural operator for learning generalized solutions of initial boundary value problems
A physics-informed transformer neural operator for learning generalized solutions of initial boundary value problems
Sumanth Kumar Boya
Deepak Subramani
AI4CE
94
0
0
12 Dec 2024
Beyond Closure Models: Learning Chaotic-Systems via Physics-Informed
  Neural Operators
Beyond Closure Models: Learning Chaotic-Systems via Physics-Informed Neural Operators
Chuwei Wang
Julius Berner
Zongyi Li
Di Zhou
Jiayun Wang
Jane Bae
Anima Anandkumar
AI4CE
28
1
0
09 Aug 2024
PINN surrogate of Li-ion battery models for parameter inference. Part
  II: Regularization and application of the pseudo-2D model
PINN surrogate of Li-ion battery models for parameter inference. Part II: Regularization and application of the pseudo-2D model
M. Hassanaly
Peter J. Weddle
Ryan N. King
Subhayan De
Alireza Doostan
Corey R. Randall
Eric J. Dufek
Andrew M. Colclasure
Kandler Smith
14
6
0
28 Dec 2023
Generic bounds on the approximation error for physics-informed (and)
  operator learning
Generic bounds on the approximation error for physics-informed (and) operator learning
Tim De Ryck
Siddhartha Mishra
PINN
59
58
0
23 May 2022
Scalable algorithms for physics-informed neural and graph networks
Scalable algorithms for physics-informed neural and graph networks
K. Shukla
Mengjia Xu
N. Trask
George Karniadakis
PINN
AI4CE
59
39
0
16 May 2022
Multiwavelet-based Operator Learning for Differential Equations
Multiwavelet-based Operator Learning for Differential Equations
Gaurav Gupta
Xiongye Xiao
P. Bogdan
124
198
0
28 Sep 2021
Arbitrary-Depth Universal Approximation Theorems for Operator Neural
  Networks
Arbitrary-Depth Universal Approximation Theorems for Operator Neural Networks
Annan Yu
Chloe Becquey
Diana Halikias
Matthew Esmaili Mallory
Alex Townsend
57
8
0
23 Sep 2021
Fourier Neural Operator for Parametric Partial Differential Equations
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
203
2,272
0
18 Oct 2020
An Energy Approach to the Solution of Partial Differential Equations in
  Computational Mechanics via Machine Learning: Concepts, Implementation and
  Applications
An Energy Approach to the Solution of Partial Differential Equations in Computational Mechanics via Machine Learning: Concepts, Implementation and Applications
E. Samaniego
C. Anitescu
S. Goswami
Vien Minh Nguyen-Thanh
Hongwei Guo
Khader M. Hamdia
Timon Rabczuk
X. Zhuang
PINN
AI4CE
145
1,333
0
27 Aug 2019
1