ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.06490
14
1

A Robustly Optimized Long Text to Math Models for Numerical Reasoning On FinQA

29 June 2022
Renhui Zhang
Youwei Zhang
Yao Yu
    AIMat
ArXivPDFHTML
Abstract

Numerical reasoning is required when solving most problems in our life, but it has been neglected in previous artificial intelligence researches. FinQA challenge has been organized to strengthen the study on numerical reasoning where the participants are asked to predict the numerical reasoning program to solve financial question. The result of FinQA will be evaluated by both execution accuracy and program accuracy. In this paper, we present our approach to tackle the task objective by developing models with different specialized capabilities and fusing their strength. Overall, our approach achieves the 1st place in FinQA challenge, with 71.93% execution accuracy and 67.03% program accuracy.

View on arXiv
Comments on this paper