Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2207.06744
Cited By
TRIE++: Towards End-to-End Information Extraction from Visually Rich Documents
14 July 2022
Zhanzhan Cheng
Peng Zhang
Can Li
Qiao Liang
Yunlu Xu
Pengfei Li
Shiliang Pu
Yi Niu
Fei Wu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"TRIE++: Towards End-to-End Information Extraction from Visually Rich Documents"
6 / 6 papers shown
Title
Reconstructing training data from document understanding models
Jérémie Dentan
Arnaud Paran
A. Shabou
AAML
SyDa
32
1
0
05 Jun 2024
LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding
Yang Xu
Yiheng Xu
Tengchao Lv
Lei Cui
Furu Wei
...
D. Florêncio
Cha Zhang
Wanxiang Che
Min Zhang
Lidong Zhou
ViT
MLLM
137
492
0
29 Dec 2020
FUNSD: A Dataset for Form Understanding in Noisy Scanned Documents
Guillaume Jaume
H. K. Ekenel
Jean-Philippe Thiran
112
353
0
27 May 2019
Bag of Tricks for Image Classification with Convolutional Neural Networks
Tong He
Zhi-Li Zhang
Hang Zhang
Zhongyue Zhang
Junyuan Xie
Mu Li
210
1,391
0
04 Dec 2018
Arbitrary-Oriented Scene Text Detection via Rotation Proposals
Jianqi Ma
Weiyuan Shao
Hao Ye
Li Wang
Hong Wang
Yingbin Zheng
Xiangyang Xue
156
1,170
0
03 Mar 2017
Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding
Akira Fukui
Dong Huk Park
Daylen Yang
Anna Rohrbach
Trevor Darrell
Marcus Rohrbach
144
1,458
0
06 Jun 2016
1