ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.08078
9
13

Toward Efficient Task Planning for Dual-Arm Tabletop Object Rearrangement

17 July 2022
Kai-Xin Gao
Jingjin Yu
ArXivPDFHTML
Abstract

We investigate the problem of coordinating two robot arms to solve non-monotone tabletop multi-object rearrangement tasks. In a non-monotone rearrangement task, complex object-object dependencies exist that require moving some objects multiple times to solve an instance. In working with two arms in a large workspace, some objects must be handed off between the robots, which further complicates the planning process. For the challenging dual-arm tabletop rearrangement problem, we develop effective task planning algorithms for scheduling the pick-n-place sequence that can be properly distributed between the two arms. We show that, even without using a sophisticated motion planner, our method achieves significant time savings in comparison to greedy approaches and naive parallelization of single-robot plans.

View on arXiv
Comments on this paper