Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2207.08673
Cited By
Back to the Manifold: Recovering from Out-of-Distribution States
18 July 2022
Alfredo Reichlin
G. Marchetti
Hang Yin
Ali Ghadirzadeh
Danica Kragic
OffRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Back to the Manifold: Recovering from Out-of-Distribution States"
8 / 8 papers shown
Title
Dense Dynamics-Aware Reward Synthesis: Integrating Prior Experience with Demonstrations
Cevahir Köprülü
Po-han Li
Tianyu Qiu
Ruihan Zhao
T. Westenbroek
David Fridovich-Keil
Sandeep P. Chinchali
Ufuk Topcu
OffRL
87
0
0
02 Dec 2024
Out-of-Distribution Recovery with Object-Centric Keypoint Inverse Policy for Visuomotor Imitation Learning
George Jiayuan Gao
Tianyu Li
Nadia Figueroa
36
0
0
05 Nov 2024
RecoveryChaining: Learning Local Recovery Policies for Robust Manipulation
Shivam Vats
Devesh K. Jha
Maxim Likhachev
Oliver Kroemer
Diego Romeres
OffRL
20
0
0
17 Oct 2024
CCIL: Continuity-based Data Augmentation for Corrective Imitation Learning
Liyiming Ke
Yunchu Zhang
Abhay Deshpande
S. Srinivasa
Abhishek Gupta
OffRL
19
12
0
19 Oct 2023
A Virtual Reality Framework for Human-Robot Collaboration in Cloth Folding
Marco Moletta
Maciej K. Wozniak
Michael C. Welle
Danica Kragic
19
11
0
12 May 2023
What Matters in Learning from Offline Human Demonstrations for Robot Manipulation
Ajay Mandlekar
Danfei Xu
J. Wong
Soroush Nasiriany
Chen Wang
Rohun Kulkarni
Li Fei-Fei
Silvio Savarese
Yuke Zhu
Roberto Martín-Martín
OffRL
147
461
0
06 Aug 2021
COMBO: Conservative Offline Model-Based Policy Optimization
Tianhe Yu
Aviral Kumar
Rafael Rafailov
Aravind Rajeswaran
Sergey Levine
Chelsea Finn
OffRL
212
412
0
16 Feb 2021
Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems
Sergey Levine
Aviral Kumar
George Tucker
Justin Fu
OffRL
GP
329
1,944
0
04 May 2020
1