ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.09413
  4. Cited By
SphereFed: Hyperspherical Federated Learning

SphereFed: Hyperspherical Federated Learning

19 July 2022
Xin Dong
S. Zhang
Ang Li
H. T. Kung
    FedML
ArXivPDFHTML

Papers citing "SphereFed: Hyperspherical Federated Learning"

8 / 8 papers shown
Title
FedDr+: Stabilizing Dot-regression with Global Feature Distillation for
  Federated Learning
FedDr+: Stabilizing Dot-regression with Global Feature Distillation for Federated Learning
Seongyoon Kim
Minchan Jeong
Sungnyun Kim
Sungwoo Cho
Sumyeong Ahn
Se-Young Yun
FedML
38
0
0
04 Jun 2024
FedImpro: Measuring and Improving Client Update in Federated Learning
FedImpro: Measuring and Improving Client Update in Federated Learning
Zhenheng Tang
Yonggang Zhang
S. Shi
Xinmei Tian
Tongliang Liu
Bo Han
Xiaowen Chu
FedML
13
13
0
10 Feb 2024
Neural Collapse Inspired Federated Learning with Non-iid Data
Neural Collapse Inspired Federated Learning with Non-iid Data
Chenxi Huang
Liang Xie
Yibo Yang
Wenxiao Wang
Binbin Lin
D. Cai
FedML
17
3
0
27 Mar 2023
FedSSC: Shared Supervised-Contrastive Federated Learning
FedSSC: Shared Supervised-Contrastive Federated Learning
Sirui Hu
Ling Feng
Xiaohan Yang
Yongchao Chen
FedML
22
4
0
14 Jan 2023
Learning to Generate Image Embeddings with User-level Differential
  Privacy
Learning to Generate Image Embeddings with User-level Differential Privacy
Zheng Xu
Maxwell D. Collins
Yuxiao Wang
Liviu Panait
Sewoong Oh
S. Augenstein
Ting Liu
Florian Schroff
H. B. McMahan
FedML
22
29
0
20 Nov 2022
Federated Learning on Non-IID Data Silos: An Experimental Study
Federated Learning on Non-IID Data Silos: An Experimental Study
Q. Li
Yiqun Diao
Quan Chen
Bingsheng He
FedML
OOD
85
943
0
03 Feb 2021
FedML: A Research Library and Benchmark for Federated Machine Learning
FedML: A Research Library and Benchmark for Federated Machine Learning
Chaoyang He
Songze Li
Jinhyun So
Xiao Zeng
Mi Zhang
...
Yang Liu
Ramesh Raskar
Qiang Yang
M. Annavaram
Salman Avestimehr
FedML
162
563
0
27 Jul 2020
Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness
  of MAML
Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness of MAML
Aniruddh Raghu
M. Raghu
Samy Bengio
Oriol Vinyals
172
639
0
19 Sep 2019
1