ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.09744
  4. Cited By
MLMSA: Multi-Label Multi-Side-Channel-Information enabled Deep Learning
  Attacks on APUF Variants
v1v2 (latest)

MLMSA: Multi-Label Multi-Side-Channel-Information enabled Deep Learning Attacks on APUF Variants

20 July 2022
Yansong Gao
Jianrong Yao
Lihui Pang
Wei Yang
Anmin Fu
S. Al-Sarawi
Derek Abbott
    AAML
ArXiv (abs)PDFHTML

Papers citing "MLMSA: Multi-Label Multi-Side-Channel-Information enabled Deep Learning Attacks on APUF Variants"

2 / 2 papers shown
Title
Designing Short-Stage CDC-XPUFs: Balancing Reliability, Cost, and
  Security in IoT Devices
Designing Short-Stage CDC-XPUFs: Balancing Reliability, Cost, and Security in IoT Devices
Gaoxiang Li
Yu Zhuang
21
0
0
26 Sep 2024
A novel reliability attack of Physical Unclonable Functions
A novel reliability attack of Physical Unclonable Functions
Gaoxiang Li
Zhuang Yu
31
1
0
21 May 2024
1